
Reusable Components for
Artificial Intelligence in Computer Games

Christopher Dragert, Jörg Kienzle, Clark Verbrugge
School of Computer Science, McGill University

Montreal, QC, Canada, H3A 0E9
christopher.dragert@mail.mcgill.ca, {joerg.kienzle, clark.verbrugge}@mcgill.ca

Abstract—While component reuse is a common concept in
software engineering, it does not yet have a strong foothold in
Computer Game development, in particular the development
of computer-controlled game characters. In this work, we take
a modular Statechart-based game AI modelling approach and
develop a reuse strategy to enable fast development of new
AIs. This is aided through the creation of a standardized
interface for Statechart modules in a layered architecture.
Reuse is enabled at a high-level through functional groups that
encapsulate behaviour.

These concepts are solidified with the development of the
SkyAI tool. SkyAI enables a developer to build and work
with a library of modular components to develop new AIs
by composing modules, and then output the resulting product
to an existing game. Efficacy is demonstrated by reusing AI
components from a tank to quickly make a much different AI
for a simple animal.

Keywords-AI, Computer Games, Reuse, Statecharts

I. INTRODUCTION

Complex and ubiquitous artificial intelligence (AI) has
become a staple of modern computer games; players expect
non-player characters (NPCs) to intelligently react to player
actions while exhibiting appropriate behaviours depending
on their role within the game context. Developing a good
AI for a real-time game environment, however, is a dif-
ficult task. While a variety of formalisms are employed,
practical AI designs typically resort to strongly customized
approaches closely connected to the underlying game archi-
tecture and NPC type. This results in a relative lack of reuse
in game AI, increasing development costs and requiring
repetitive development of often quite similar AI behaviours.

Previous work has argued the reason for this lies with
the formalisms employed [1]. The applicability of software
engineering practices becomes limited due to the use of non-
modular custom approaches. As an alternative, a layered
Statechart approach [2] provides an inherent modularity
with nesting capabilities. By providing a formalism and
structure that encapsulates behaviours in terms of functional
groups we are able to define a development strategy that
allows for extensive reuse of different AI components,
including both high and low-level elements. Clear identifi-
cation of code dependencies further permits analysis and the
tool-based presentation required to ensure proper integration

into the actual game code. This yields a faster development
process with the ability to employ a library of AI behaviours
to construct complex AIs, while at the same time simplifying
adaptation of the AI to an actual game context.

We illustrate our approach by constructing a new AI for
a squirrel by reusing large portions of an AI designed for
a tank. These are quite different game AI contexts, and
would typically be approached as unique and very separate
development tasks: the tank is a combat element intended
for a competitive game, while the squirrel is a background
NPC. At a high-level, however, there are many behavioural
similarities, and by expressing and reusing AI behaviours at
a suitable level of abstraction our approach is able to capture
many of these commonalities: over half of the AI modules
in our final squirrel AI are reused from the tank.

Our development and reuse approach is summarized and
reified in the tool SkyAI. This software framework directs
and facilitates the development workflow, taking in Stat-
echarts and associated classes, providing an interface for
producing novel AIs from a library of behaviours, and
exporting code that can be directly incorporated into a
game. By formally representing and understanding game
code associated with specific behaviours, SkyAI is able to
perform basic analysis of the constructed AI, ensuring code
and functional group dependencies are properly satisfied and
thus the AI is well-constructed. SkyAI represents a useful
illustration of the practical value and general feasibility of
our approach.

Major contributions of our work include:
• Extending the reuse strategy for developing game AIs

based on Statecharts presented by Dragert et al. [1]. The
work further demonstrates the feasibility of Statecharts
for game AIs [2], by defining efficient development,
component definition, and porting strategies.

• A visceral demonstration of reuse by designing a basic
AI for a squirrel, making extensive reuse of components
originally defined for a tank.

• Concretizing the approach through the design of a
software tool, SkyAI. As part of a practical workflow
for AI generation, it simplifyies component reuse and
allows for non-trivial analysis helping to ensure that AI
components are properly composed and integrated.



II. BACKGROUND AND RELATED WORK

Artificial intelligence in modern computer games focuses
upon controlling NPCs such that they exhibit behaviours
relevant to that character’s role in the game. This type of
AI is referred to as computational behaviour, distinguishing
it from classical AI approaches. In the context of game de-
velopment, efficiency and testability are paramount, strongly
constraining design approaches. The easiest approach is to
employ arbitrary code expressed through a custom scripting
context [3], [4] or a relatively simple tree or graph structure,
such as a decision tree. This type of narrow game-by-game
focus is a source of consternation for game developers.
At GDC 2011, Kevin Dill raised this exact issue arguing
that the lack of behavioural modularity was stymying the
development of high quality AI [5]. With no agreed-upon
formalism for AI behaviour, there is no clear path towards
the creation of open-source behaviour resources like there
are for 3d models, animations, and so on. Development time
is spent again and again crafting the same basic behaviours.

Industrial research into AI reuse focuses on modularizing
code artifacts [6] or on modifying an existing AI system [7],
[8] with incremental improvements rather than modularising
and porting behaviours to a fundamentally new context. Our
approach aims to shed light on this relatively unexplored
space, by demonstrating how behaviours themselves can be
modularized and reused in new game contexts.

Finite state machines (FSMs) are the oldest and most
commonly used formalism to model game AI, wherein
states represent behaviours and transitions are triggered to
change the behaviour exhibited [9], [10]. Hierarchical FSMs
(HFSMs) incorporate aspects of Statecharts [11] by allowing
states to contain substates with internal transitions. In the
context of reuse, superstates in HFSMs can be treated as
modules and exported to new AIs [12]. This approach is
valuable, but omits important details such as code portability,
and has no provision for interaction with internal states.
The strict hierarchical nature of HFSMs can be limiting as
it places restrictions on how transitions between states can
be modelled. This limitation is shared by behaviour trees
[13], which although they more clearly delineate how the
system chooses behaviours, are strongly hierarchical, and
further suffer from a lack of modal states encapsulating
different behavioural groupings. Modularizing behavioural
components is based upon pruning and reusing branches,
an idea which has been previously been explored [14]. In
a practical sense, the extent of reuse in behaviour trees is
limited as individual tree nodes are often highly game or AI-
specific—code actions and abstract, high-level behaviour are
intimately entwined in behaviour tree models.

In theory, planning approaches seem ideal for reuse. Goal-
oriented action planners, popularized by the game F.E.A.R.
[15], choose behaviours using a heuristic search through a li-
brary of behaviour modules with pre- and post-conditions. In

practice, getting the planner to select appropriate behaviours
requires a proliferation of variables encapsulating basic
knowledge, along with considerable tweaking of weights
and heuristics. As a result, the modules become highly
customized to the game context and general purpose reuse
becomes more difficult as a result.

A. Layered Statechart-Based AI

Our work adopts the formalism developed by Kienzle et
al. [2], who introduce an AI based on an abstract layering
of Statecharts. This approach is inspired by the sense-plan-
act architecture common in robotics. Here, each Statechart
implements a single behavioural concern, such as sensing the
game-state, memorizing data, making high-level decisions,
and so on. Due to the clear demarcation of duties, the
Statecharts are ideal for reuse. An AI is built from multiple
Statecharts, each embodying a specific concept, with the
exhibited behaviour being a function of the superposition of
states. Importantly, communication can occur at lower levels
without involving higher levels, meaning the formalism
employs a subsumption architecture [16]. This allows for
improved modularity; higher levels of abstraction do not
require a full set of knowledge to make decisions, which
also reduces cross-cutting concerns.

Under this model, the lowest layer contains sensors, which
read the game state typically through listeners or observers
that generate events as changes are detected. Events are
passed up to analysers that interpret and combine sensing
data to form a coherent picture of the game state. The next
layer contains memorizers, which store analyzed data and
complex state information for later reference. The high-
est layer is the strategic decider, most typically a single
Statechart, which reacts to analysed and memorized data
to decide upon a high level goal. Becoming less abstract,
the goal triggers a tactical decider to determine how it will
be executed. The next layer provides executors that enact
execution decisions, translating goals into actions. Depend-
ing on the current state of the NPC, certain commands can
cause conflicts or sub-optimal courses of action, which are
corrected by coordinators. The final layer contains actuators,
which execute actions by modifying the game-state.

In Fig. 1, a sample FoodMemorizer Statechart is
presented. It reacts to itemSighted events by memorizing the
item if it is food. Other Statecharts access this information by
calling the FoodMemorizer’s associated class. Statecharts
have become of interest relatively recently to the game
development industry, with initial designs focusing on low-
level issues such as efficient interpretation within a game
context [17].

B. Reusing Statecharts

Our prior work proposed a strategy for reusing Statechart-
based AI [1]. The fundamental reuse component was defined
to be the AI Module, encompassing a Statechart and an



rememberFood(GameEntity g)
removeFood(GameEntity g)

position[] placesWithFood
FoodMemorizer

NoFoodSighted

RememberFood
itemSighted(i)[i.isEdible()] / this.rememberFood(i)

<<behavior>>

FoodSighted

itemPickedUp(i)[i.isEdible()] /
 this.removeFood(i)

Eyes

[placesWithFood.getSize() = 0]

[else]

itemSighted(i)[i.isEdible()] /
this.rememberFood(i)

Figure 1. A Sample AI Statechart

EnemyTracker
Description: Tracks an object’s position using two observation points
Game: Tank Wars
Parameters: <type T>::The in-game type of the object to be tracked
Language: C++

Events Calls
Input: Game Imports:
-enemySighted(<T>) -import TankWars.<T>
-enemyLost(<T>)

Synchronous Calls:
Output: -Radar.getEnemyPos()
-enemyPositionChanged(<T>)

Available Calls:
Internal: none -boolean enemyMoved()

Figure 2. The interface for the EnemyTracker AI module.

associated class. Next, an interface for the reuse of AI
modules was designed, capturing the properties of a module
relevant to reuse. Modules communicate primarily through
event-based message passing, with events being marked as
input, output, or internal, depending on the source module
and target module for each event. As well, synchronous calls
between associated classes allow for direct communication,
for example retrieving information from a memorizer. Fi-
nally, modules may access the game directly, and thus the
interface shows these interactions as well. Figure 2 gives a
sample interface for an AI module that tracks enemies.

Reuse of AI modules allows for behavioural aspects of an
AI to be exported, but the typical module is too fine-grained
to capture a higher-level behaviour. Functional groups are
thus defined to provide a structure for the composition of
multiple modules, allowing behaviours to be reused as a
single component. Importantly, a functional group can be
given a composite interface identical in form to the interface
for individual modules, and thus inserted interchangeably.
As an example, the Tank Wars AI [2] contains several
modules that together comprise the fuel management system.
Thus, the FuelTank sensor, the FuelStation map,
and the RefuelPlanner can be combined into a single
FuelManagement functional group, ready for reuse in a
new AI as a single group.

III. AI MODULE REUSE IN PRACTICE

Creating a new AI through reuse begins similarly to
regular AI construction: the role of the AI within the
game context is considered, then translated into a set of

behaviours fulfilling that role. The thinking and planning
that leads to the expression of these behaviours must then
be implemented. At this stage, a reuse development approach
diverges as it replaces implementation by importing existing
AI modules wherever possible. In the absence of a sizable
library of existing behaviours, it is unrealistic to assume
that new AIs can be created purely through reuse, but
as the library grows, the amount of reuse will increase,
proportionally decreasing the amount of new development
required.

A. Component Integration

Integrating components correctly and easily is the primary
problem in AI reuse. Since AI modules work together in a
layered architecture, integration demands the establishment
of intra-module communication. In the case of Statecharts,
communication typically occurs via event-based message
passing, but could also be through a synchronous call. Thus,
connecting an AI module can be defined as adding an AI
module to a system such that it communicates with that
system, or acts orthogonally to all other components. Since
functional groups use the same interface as AI modules, they
do not present a special case and the following integration
strategies apply equally to both groups and modules. In our
experience the complexity of inter-module communication
is quite limited, obviating the need for module protocol
management through constructions such as protocol state
machines.

For event-based connections, modules communicate by
pairing an input and output event. If a broadcast model is
assumed, event renaming is typically sufficient, allowing
connections to be formed by renaming the output event
so that it matches the input event (or vice versa). To
ensure correctness, existing names must be respected. If an
already used event name is shared by a new module, events
should be renamed to prevent the formation of unintended
connections. Internal events, by definition, should never be
used to form a connection. Since renaming an internal event
can never break connections, it is always safe to rename
an internal event when it conflicts. In the case of an event
being used as both an internal communication and an output
event, we recommend classification as an output event, with
the goal of keeping those events classified as internal purely
internal.

In some special cases, where multiple Statecharts already
interact on the same event, renaming may create unintended
connections or break existing connections. Additionally,
there are boundary cases where renaming fails, typically in
situations where events are used both internally and exter-
nally by multiple Statecharts. In these cases, targeted usage
of narrowcasting will allow for safe event renaming. As an
alternative, narrowcasting could be employed exclusively,
though this creates more effort at the modelling level as
connections must be managed.



Integration relating to the associated class is less forgiv-
ing, as an unsatisfied game import or synchronous method
call will prevent compilation or cause run-time errors. In
the case of unsatisfied method calls, either the target AI
module must also be included, or the associated class must
be modified to point to a new implementing module.

In a reuse context, synchronous calls are more restrictive
than event-passing, and limiting the number of synchronous
calls simplifies integration. Event passing occurs at the
modelling level and is easily addressed there. In general, the
following guideline may be used: when a module receives
an event and needs to take action immediately based on
information known at the sending module, that event should
include the relevant information as event payload. When a
module needs complex state information at an undetermined
point in the future, then a synchronous call is appropriate.

Module reuse across different games is both possible and
encouraged. The simplest case is when an AI modules is
purely behaviour driven and has no game imports; these
modules are game-agnostic and may be freely moved be-
tween games. If a module has game imports, then reuse
in a new game will require updating all game imports to
matching classes in the new game. This may not always
be trivial or possible, and thus designing for reuse implies
that modules be made game agnostic whenever possible.
The process is much more complicated if the target game
is coded in a programming language different than that of
the module. Here, only the Statechart could be reused; the
associated class would require a total rewrite.

B. Preconditions and Correctness

An AI module, when situated in an AI, can be highly
dependent on the other modules within the AI. Reuse of
such an AI module without all dependent modules could
prevent that module from fulfilling its expected behaviour.
For example, if a Statechart requires an input α or β before
it can receive an event γ, but the target AI does not have
Statecharts producing α or β, then it can never receive γ
and the Statechart behaves as though it is unconnected.
Alternatively, the acceptability of a system that can only
produce one of α or β is unclear.

A solution to this would come in the form of a reachability
analysis, where a thorough examination of the new AI at the
model level can detect problems of this type. Specifics of this
are out of scope of this paper, but facility for such analysis
is integral to our design and future work.

IV. CASE STUDY: TANK TO SQUIRREL

To demonstrate the validity and usefulness of the pre-
sented approach, this section gives a concrete example of
AI reuse. Here, we take the AI developed for the Tank Wars
game in [2] and reuse components of it to create the AI
for a squirrel. Squirrels are small land-based rodents that
collect nuts and acorns, and would seem to have little in

Sensors

Analyzers

Memorizers

Strategical Deciders

Tactical Deciders

Executors

Coordinators

Actuators

Position
Turret

Radar FuelTank WeaponSystem

InRangeDetector

EnemyTracker FuelStationMap ObstacleMapRepairStationMap

PilotStrategy

AttackPlanner RefuelPlanner RepairPlanner

ExplorePlannerEscapePlanner

Pathfinder
Steering

TurretTankMovementCoordinator

MotorControl TurretControl

TurretSteering

ObstacleDetector WaypointDetector

Obstacle

Figure 3. Detailed Tank Architecture, where lines represent synchronous
calls between modules.

common with a military vehicle. Using the described reuse
techniques coupled with good modular design practices, we
find that many elements of the tank can indeed be reused,
greatly simplifying the development time of the new squirrel
AI.

A brief overview of the Tank AI, developed for the
Tank Wars simulation by Electronic Arts, is presented here;
readers interested in full details are referred to the original
paper [2]. The AI consists of 24 modules in total, divided
across the layers as shown in Fig. 3. Each of the connecting
arrows represents a synchronous call; connections arising
from event-based message passing are not shown on the
diagram. Behaviourally, the tank explores the game world
looking for enemies, gas stations, repair stations, and obsta-
cles, all the while memorizing locations of objects spotted.
When the Radar detects an enemy, the tank engages as
defined in the AttackPlanner. If the tank is damaged,
the EscapePlanner can choose to retreat to the repair
station. The game actions performed by the tank are limited
to moving forward and back, turning left and right, and
rotating and firing the turret.

In this work, we are using a new version of the Tank AI
written for Mammoth [18]. Mammoth is written in Java,
and uses SCXML Commons as the Statechart execution
environment [19]. This version of the tank was written such
that it respects the UML descriptions given in the Tank
Wars paper. As Mammoth supports event payloads, we were
able to make the AI more loosely coupled by eliminating
many of the synchronous calls. For example, when the
Radar module spots a player it creates an enemy sighted
event, which is always followed by the EnemyTracker
making a synchronous call to the radar to gather information
about the enemy. Using event payloads, this is simplified by
having the Radar create a player spotted event with enemy
information as payload.

The target AI seeks to model a squirrel, which in the
Mammoth game world is intended to be a minor background
character, moving through open spaces and collecting food



Safe

SquirrelStrategy

Looking
ForFood

EatWhen
Ready

Fleeing

lowThreat

Wandering

noThreat

foodLow

foodNormal

readyToEat / eat

highThreat

 
Brain

<<behavior>>

Figure 4. SquirrelBrain Module.

when it can. Characters in Mammoth are restricted by
energy, which is consumed as the AI acts. For squirrels,
it is restored by eating gathered food. Naturally fearful,
squirrels seek to maintain a healthy distance from any non-
squirrel that approaches. Basic squirrel behaviour is thus
the ability to find food and eat when energy becomes low,
while keeping a healthy distance from threats. We will seek
to reuse modules from the tank whenever possible, without
compromising on the intended behaviour.

A. Reuse in Practice

At the highest level, tank behaviour is much different
than that of a squirrel, and it is unrealistic to try to reuse
the tank’s strategic decider. A new strategic decider, the
SquirrelBrain shown in Fig. 4, was developed. The
SquirrelBrain uses four high level goals: wander, look for
food, flee, and eat. It can be thought of as the root of the new
AI in that building outwards from the required behaviours of
the SquirrelBrain allows us to select the AI modules
to reuse. As modules were inserted, changes were made to
connect modules and link them to new modules. A summary
of modules reused and changes made is given in Table I. The
remainder of this section gives the rationale for each change,
and gives insight into the thought process behind reuse.

Three of the four high level goals were addressed by
reusing existing tactical deciders. Fleeing is handled by
reusing the EscapePlanner. The RefuelPlanner per-
forms the look for food goal, insofar as it moves towards
a previously spotted fuel depot or searches if it hasn’t
seen one, the exact functionality required when a squirrel
looks for food. Additionally, wandering is akin to the
ExplorePlanner, and can be reused by simply renaming
input event explore to wander. This connects the three
planners to the SquirrelBrain.

The process continues by building outward and attaching

Table I
MODULE MODIFICATIONS

Tank Module Squirrel
Module

Modifications

EscapePlanner Flee
Synchronous call to EnemyTracker
pointed at NearbyThreats

RefuelPlanner LookForFood
look for fuel input renamed to
look for food
move output renamed to
take item(Item)
FuelStation import replaced with Item
import

ExplorePlan-
ner

Wander explore input event renamed to wander

Waypoint-
Pathfinding

Waypoint-
Pathfinding

All functional-group events reclassified
as internal events.

FuelStation- SeenFood
FuelStation import replaced with Item
import

Map Parameter KeyItemType set to type Item
FuelTank Energy Parameter fuel set to energyLevel
Position Position Tank import replaced with Squirrel

import

modules to input and output events that are unconnected.
When the tactical deciders choose how to perform a goal,
they send output events to executors and coordinators, where
they are transformed into concrete actions. Tank executors
focus on steering and turret control, neither of which apply to
a squirrel. This means that no reuse is possible at this level,
and so new executors must be developed. This includes a
MoveAway executor, designed to receive the flee(Position)
output event from the FleePlanner and pick a concrete
flee destination. While the tank could just refuel, the squirrel
must pick up and collect food and thus needs another
executor. The new TakeItem executor ensures that the
squirrel is close enough to a target object to pick the item up,
and issues move and eat commands accordingly. Pathfinding
is addressed through a functional group. The Pathfinder,
ObstacleMap, WaypointDetector, and Obstacle
sensor together perform waypoint-based pathfinding.

At the level of concrete actuators, the squirrel is quite
different to the tank. It has no turret and nothing to coor-
dinate, leaving the coordinator layer empty. The actuators
for the tank are relative, while the squirrel can simply
move to a location. Thus, the squirrel needs a new Move
actuator, along with a Pickup and Move actuator. These
receive events with payloads that determine the actuation
target. Move receives the output move destination(Position)
events sent by the WanderPlanner, MoveAway executor
or Pathfinder, Pickup connects to the TakeItem
executor, and Eat receives eat events sent by the brain,
directly fulfilling the simple high level eat goal.

The required memorizers are already spelled out by the
unsatisfied synchronous calls from the planning modules.
The EnemyTracker needed by the Flee planner is
unsuitable since it memorizes the location of only one
enemy and multiple threats exist for a squirrel, so a new
NearbyThreats memorizer is connected and used. How-
ever, the FuelStationMap is still appropriate, since
it memorizes locations. That AI module is actually a



Sensors

Analyzers

Memorizers

Strategical Deciders

Tactical Deciders

Executors

Coordinators

Actuators

PositionEnergyGameObject

Threat

NearbyThreats ObstacleMapSeenItems

SquirrelBrain

LookForFood WanderFlee

PathfinderTakeItem

Eat Move

MoveAway

WaypointDetector

Pickup

Obstacle

Figure 5. Detailed squirrel architecture; shaded modules are reused from
the Tank.

KeyItemMemorizer (as seen in Fig. 1) and is reused
by simple parameter modification.

Last come the sensors and analyzers. The only analysis
for the squirrel is determining threats (which the tank did
not do) so a new module, the Threat analyzer, is needed.
This connects to the NearbyThreats memorizer through
event-passing. The FuelTank sensor and the Position
sensor are both reused to complete the sensing input. Lastly,
the GameObject sensor is new, since the tank did not
explicitly detect in-game objects.

B. The New Squirrel

The resulting squirrel AI is shown in Fig 5. It contains 19
modules, 10 of which were reused from the tank. By looking
at the AI module interfaces, connecting AIs was straightfor-
ward; all information relevant to reuse was included in the
module. This connection process provides some confidence
in the design—we know the new MoveAway executor is
connected to the reused Flee planner since we explicitly
connected them through event renaming. We know the
SeenItems memorizer gets item information since it was
connected to the GameObject sensor using an event with
an Item payload, and so on.

This example shows that reusing even an unrelated AI will
result in an improvement in development time, with more
than half of the AI being reused. More similar AIs could be
developed even faster. For instance, a Bear AI that scrounges
for food but attacks players instead of fleeing could reuse
almost the entire squirrel AI, plus a few new modules that
provide attacking behaviours.

V. THE SKYAI TOOL

With a formal AI module interface, we enable the creation
of a tool for AI module based reuse. Our first iteration of
such an application is called SkyAI. It allows a user to
grow and manage a library of AI modules, and create new
AIs through reuse by adding modules and changing their
properties. While SkyAI is still in a pre-alpha state, it already

reinforces the validity of our reuse approach. Development
is ongoing and the tool will be released to the community
upon maturation.

SkyAI uses an abstract representation of the AI module,
building each module from its source files with guidance
from the designer. Currently, only Statecharts represented
in SCXML and associated classes written in Java can be
processed, but the architecture supports later expansion to
different representations and languages. AI modules are
stored in an XML format, and managed by SkyAI along
with the source files.

A. SkyAI Workflow

Usage of SkyAI begins by creating new modules. The user
specifies the source SCXML Statechart and Java associated
class, whereupon SkyAI reads the source file and extracts
information about events, methods, and imports, finally
adding the module to the library. Some information cannot
be determined programmatically, such as internal event
classification and some synchronous calls, so SkyAI displays
the interface for the new module, allowing modification as
necessary. When complete, the new module is added to the
SkyAI module library and made available for reuse.

A new AI built from SkyAI is handled as a project,
and must be assigned to a specific game. Modules are
selected from the library listing and added to the project.
Selecting a module here will allow the designer to make
changes necessary for reuse, such as renaming events, or
other modifications as found in Table 1. While the designer
works, errors and warnings are generated, supporting the
design process. When the new AI is complete, the AI is
exported and reuse modifications are saved into new source
files, ready for insertion into the target game.

B. Errors and Warnings

Perhaps the most important support feature in SkyAI is the
error and warning system. A number of potential issues arise
when building a new AI through module reuse, primarily
related to module connection. These are classified as errors
if they will prevent the AI from running, and must be
corrected before exporting is allowed. A problem is merely
a warning if it is a potential source of behavioural error, but
will not prevent the AI from running. These are also listed
in the project interface, and may be ignored. The current set
of errors and warnings covers issues at the interface level,
and is shown in Table II.

VI. CONCLUSIONS AND FUTURE WORK

There is strong commonality within game AIs, even be-
tween apparently different character classes—certainly at a
high-level, NPCs have many similar behaviours. Historically,
however, reuse has been complicated by a focus on context-
dependent reactive behaviour, and the need to express the
AI in terms of strong code dependencies. As we have



Table II
THE LIST OF WARNINGS AND ERRORS GENERATED BY SKYAI

Severity Problem Description
Error Game

Mismatch
Module x has game imports for g when target
game is j.

Error Unsatisfied
Call

Module x calls m in class, which does not exist.

Error Event Interfer-
ence

Event e is internal to module x, but is used by
module y.

Warning No Input Module x has input event e, which is not gener-
ated by any module.

Warning No Receiver Module x outputs event e, which is not received
by any module.

Warning No Actuators Project has no actuators. Resulting AI cannot act.
Warning Unused call Module x provides method m which is never

called.
Warning Null Parameter Parameter p in module x is null.

shown here, a Statechart-based approach greatly helps in
exposing the reuse opportunities, encapsulating the reuse at
an appropriate level that encompasses not just a specific
mechanic, but the high-level, behavioural abstraction. By
composing functional groups of behaviours, novel AIs can
then be directly constructed from a library of AI modules, a
very practical strategy we demonstrate in the design of the
SkyAI development tool.

A primary benefit of formalizing reuse as we have done
is in further being able to validate and perhaps even pro-
cedurally generate new AIs. Our design facilitates model-
checking and verification, and as part of future work we are
developing analyses that help in identifying and avoiding
some of the more intricate logical errors that may arise in
combining larger and more complex AI modules. Implicit
state or message dependencies, for example, are a potential
concern that may be addressed through deeper analysis of
functional group behaviours, as well as through more formal
means of specifying Statechart interactions, such as found
in protocol state-machines.

ACKNOWLEDGMENT

The authors would like to thank the Natural Sciences and
Engineering Research Council of Canada for its support.

REFERENCES

[1] C. Dragert, J. Kienzle, and C. Verbrugge, “Toward high-
level reuse of statechart-based AI in computer games,” in
Proceedings of the 1st International Workshop on Games and
Software Engineering, 2011, pp. 25–28.

[2] J. Kienzle, A. Denault, and H. Vangheluwe, “Model-based
design of computer-controlled game character behavior,” in
MODELS, ser. LNCS, 2007, vol. 4735, pp. 650–665.

[3] Unreal Technology, “The Unreal Engine 3,” http://www.
unrealtechnology.com/html/technology/ue30.shtml, 2007.

[4] C. Onuczko, M. Cutumisu, D. Szafron, J. Schaeffer, M. Mc-
Naughton, T. Roy, K. Waugh, M. Carbonaro, and J. Siegel,
“A Pattern Catalog For Computer Role Playing Games,” in
Game-On-NA 2005. Eurosis, August 2005, pp. 33 – 38.

[5] Schwab, Brian and Mark, Dave and Dill, Kevin, and
Lewis, Mike and Evans, Richard, “GDC: Turing tantrums:
AI developers rant,” http://www.gdcvault.com/play/1014586/
Turing-Tantrums-AI-Developers-Rant, 2011.

[6] Laming, Brent and McGinnis, Joel, and Champanard,
Alex, “Creating your building blocks: Modular compo-
nent AI systems,” http://www.gdcvault.com/play/1014573/
Creating-Your-Building-Blocks-Modular, 2011.

[7] M. Dyckhoff, “Evolving Halo’s behaviour tree AI,”
Presentation at GDC, 2007, http://www.bungie.net/
images/Inside/publications/presentations/publicationsdes/
engineering/gdc07.pdf.

[8] Walker, John and Zubek, Robert, and Carlisle, Phil, “Little big
AI: Rich behavior on a small budget,” http://www.gdcvault.
com/play/1012483/Little-Big-AI-Rich-Behavior, 2010.

[9] D. Fu and R. T. Houlette, “Putting AI in entertainment: An
AI authoring tool for simulation and games,” IEEE Intelligent
Systems, vol. 17, no. 4, pp. 81–84, 2002.

[10] S. Gill, “Visual Finite State Machine AI Systems,” Gama-
sutra: http://www.gamasutra.com/features/20041118/gill-01.
shtml, November 2004.

[11] D. Harel and H. Kugler, “The Rhapsody semantics of State-
charts (or, on the executable core of the UML),” LNCS, vol.
3147, pp. 325 – 354, 2004.

[12] J. Krajewski, “Creating all humans: A data-driven AI frame-
work for open game worlds,” http://www.gamasutra.com/
view/feature/1862/creating all humans a datadriven .php, 2
2009.

[13] D. Isla, “Handling complexity in the Halo 2
AI,” Game Developers Conference, p. 12, 2005.
[Online]. Available: http://www.gamasutra.com/gdc2005/
features/20050311/isla 01.shtml

[14] C.-U. Lim, R. Baumgarten, and S. Colton, “Evolving be-
haviour trees for the commercial game DEFCON,” in Appli-
cations of Evolutionary Computation, ser. LNCS. Springer,
2010, vol. 6024, pp. 100–110.

[15] J. Orkin, “Three states and a plan: The AI of F.E.A.R.” in
Proceedings of the Game Developer’s Conference, 2006.

[16] R. Brooks, “A robust layered control system for a mobile
robot,” Robotics and Automation, IEEE Journal of, vol. 2,
no. 1, pp. 14 – 23, Mar. 1986.

[17] P. Kolhoff, “Level up for finite state machines: An interpreter
for statecharts,” in AI Game Programming Wisdom 4, S. Ra-
bin, Ed. Charles River Media, 2008, pp. 317–332.

[18] J. Kienzle, C. Verbrugge, B. Kemme, A. Denault, and
M. Hawker, “Mammoth: A Massively Multiplayer Game
Research Framework,” in 4th International Conference on the
Foundations of Digital Games (ICFDG). New York, NY,
USA: ACM, April 2009, pp. 308 – 315.

[19] Apache Commons, “Commons SCXML,” http://commons.
apache.org/scxml/, November 2010.


