Analyzing Computer Game Narratives

Clark Verbrugge and Peng Zhang

School of Computer Science, McGill University
Montréal, Qebec, Canada, H3A 2A7
{cl unp, pzhangl3}@s. ntgill.ca

Abstract. In many computer games narrative is a core component with the game
centering on an unfolding, interactive storyline which both motivates adfrivisn
by the game-play. Analyzing narratives to ensure good propertiessdrtipor-
tant, but scalability remains a barrier to practical use. Here we developreaf
analysis system for interactive fiction narratives. Our approach ebas a rela-
tively high-level game language, and borrows analysis techniquesdoonpiler
optimization to improve performance. We demonstrate our system orietywar
of non-trivial narratives analyzing a basic reachability problem, thike fmwin
the game. We are able to analyze narratives orders of magnitude thagethe
previous state-of-the-art based on lower-level representatioiisléMel of per-
formance allows for verification of narrative properties at practicales.

Key words: game narrative,verification,optimization,performance analysis

1 Introduction

Narrative is a central feature of many computer games, diigrirom text-based inter-
active fiction to current adventure, RPG, and mixed genmssiich games a number of
narrative properties become important to an immersive gaiperience, including log-
ical consistency, continuity of story elements [1], levettension” or atmosphere [2],
as well as game-play issues such as ensuring player progresadequate coverage of
potential player choices [3, 4]. The complexity of largerratives, however, can make
formal analysis of narratives difficult. For analysis of {pgame segments or existing,
complete narratives the combinatorial explosion impligélich set of player choices
and game content elements results in scaling issues,fgnitbnservative verification
of narrative properties.

In this work we develop an efficient system for analyzing ctexjgame narratives.
Our approach is based on an exhaustive analysis of the imarstéte-space, and thus
applies to general reachability problems. To improve 4ikitlg we extract high-level
game information from game code by applying program ansigsihniques more tra-
ditionally found in the compiler optimization domain. Thigormation is used within
an optimized search to reduce the branching factor and wegerformance.

We illustrate our design by examining a fundamental exaropleachability, the
path to win the game. In this context we analyze a variety of-tnvial narratives

* Now at Microsoft:pezhang@ri cr osof t . com

2 Verbrugge and Zhang

derived from both commercial and amateur interactive ficiames. Using our opti-
mized state search, we are able to determine winnabilityizvgeconds to minutes on
a modern machine. These results dramatically improve oriqure, low-level work on
formal winnability analysis, which has been limited to raditre inputs orders of mag-
nitude smaller [5]. The ability to perform reachability &ses on narratives of much
larger scales shows that formal verificaton of a wide vaidéproperties can be feasibly
performed on non-trivial, industrial-size game narragive

Contributions of our work include the design of a completstesn for reachability
analysis of computer game narratives, an optimized seasbdon a novel dataflow
analysis, and non-trivial experimental investigation asic winnability. In the sections
that follow we give related work and contextual backgroumddur research, followed
by our system design and results.

2 Reated Work

Our approach to game narratives aims at analysis/verditatiorder to improve design
and thus player experience. A number of other works haveidésuified and formal-
ized narrative properties that players find pleasing, gisra, or which may improve
story generation. Adams, for instance, proposed basicejn@s for industry devel-
opers in a series of online articles [3], where among mangrgbhoperties the prob-
lem of narrative game-play being allowed past the point efnability was presented;
Verbrugge formalized this notion as “pointlessness.” Bdrros and Musse proposed
a model designed to ensure pace/tension [2], and Nelson é¢fahed properties re-
lated to the spatial locality of actions, as well as motimadl or logical continuity of
events [1]. Logic-based approaches are popular in thissggrand have been applied
to verify the time-line of a non-linear story [6], and enslogical correctness and con-
tinuity of events [7]. Petri net models have also been pregand used to represent
narratives for both story construction and analysis [48-Our work here builds on
previous experience in winnability analysis, applying aggc SAT-based solver to a
Petri net model of game narratives [5].

In this work we post-factoanalyze narratives manually developed as text-based,
interactive fiction adventures. Although text-based IF garare an older genre, they
have had as a whole a strong influence on more modern intexdidiion, adventure,
and RPG game design. An active community continues to exise#l, and a number of
IF authoring kits are available as products on their own 2] pr in terms of extensions
built on older commercial offerings [13]. To limit technlceomplexity in isolating
narrative structure, we have based our design on the PNFgtidge for interactive
fiction [5].

3 Narrative Model

Analysis of game narratives assumes of course a suitablesemtation. As mentioned

in the previous section, we make use of a language for camstguinteractive fic-
tion (IF) gamesPNFG [5]. The IF genre has the advantage of consisting of complex
narratives, relatively easily extracted from the game itgcture. The PNFG format is

Analyzing Computer Game Narratives 3

preferred over more full-featured languages such as Infd3has a simplified, but
complete IF language with a well-defined semantics and estiagntax.

IF Properties. An interactive fiction narrative provides a minimal, typigaext-
based virtual environment. A player avatar is controlladtigh textual input forming
game commands, and the current or resulting game statedgedby textual output.
Game-play is turn-based, and usually involves exploraif@mn interconnected series of
rooms, wherein the player (avatar) may examine, move, drehotse manipulate game
objects. Appropriate actions unlock or control narrativeguess, moving the player
from an initial state to either a winning or losing conclusio

Basic game control flow is straightforward. After initiadizon, the game waits in
an idle state for user input; user commands trigger gameresgtivhich can result in
either a game win, loss, or (more typically) a return to tHe sdate following any post-
turn processing. The complexity of game state is an impogaoperty to analysis.
In IF games critical game state consists of simple objecpgnties, such as a room
being lit or unlit, as well as the object containment hiehgre-the location of each
object, including the player’'s inventory. Counters and aiyt object allocation can
add further complexity, although games are usually finibelynded, with a small limits
on counters and a fixed maximum number of available game t3bjec

PNFG. The PNFG language provides a minimal model of IF game strec@Game
objects and rooms are defined along with boolean state \@siaénd containment is
internally represented by further boolean statgr{ot) in y for all objectsz and lo-
cationsy). User commands invoke code which can set and unset obgessmove
objects between locations, as well as branch conditioradlpbject state or location.
Syntatic sugar is provided for a number of further common dRstructs, including
finite counters, scoping of game commands; more languagésiean be found in [5].

4 Narrative Analysis

Our overall approach to narrative analysis is illustrate&igure 1. PNFG game spec-
ifications are subject to initial, high-level analysis, atniis then used in conjunction
with the game’s interpretable (compiled “NFG”) form as pafran optimized search of
the game state space. The subsections below describe thesbasch behaviour and
our optimization.

As an example of useful narrative analysis N

.pnfg compiler .nfg

search

and to give our study a specific analysis go I_,pnfg
we investigate the general problem of comput-
ing “winnability.” This involves identifying the
sequence of commands that bring a player fram ,

L - i [
an initial state to a winning game completion. A
well as verifying a fundamental game property optimizations
(the game should be winnable), finding one or a report‘
“winning paths” is an instance of the more general '
problem of efficiently determining state reachabil- Fig. 1. Overall system design.
ity, and our techniques can be easily abstracted from thaaditity goal and applied
to other search problems.

4 Verbrugge and Zhang

4.1 Basicsearch

The basic state-space search proceeds as a back-traaitigsfatst search of reachable
game states, applying all possible game commands at edeh Gme state is inter-
nally stored in terms of the state of the internal NFG repr&geon, but is not directly
accessed by the search system. Reachability and progesisstead determined by the
ability of a game interpreter incorporated into the systemafply a given command,
monitoring for win, lose or error conditions.

A number of generic optimizations improve performance ¢ tidve, brute-force
approach. Cycle detection is an effective tool for mostatares. Many games, for ex-
ample, tend to permit a variety of commands such as “looksateine,” or command
sequences such as “take x, drop x” that do not overall modifye state, but never-
theless contribute to the branching factor and lengthercBgaaths. Our system thus
maintains a stack of states during its DFS activity, anddates searches containing
states previously encountered in the current game seatbh @aching is also used
across search branches in order to avoid “dead-ends,” wsstehich have no legal
actions that can lead to a game win (i.e., all actions leadth®rlosing, errors, or
dead-ends). These states are cached, and used to furthertbeustate space search.

Although these optimizations are effective, larger naresthave many commands
and objects as well as potentially long solution depths, fancpractical analysis a
very small branching factor and/or good search heuristiesequired. Our approach
applies dataflow analysis techniques more typically usetbimpiler optimization to
extract game information in order to further improve perfance. Below we describe
our primary techniques for optimizing the search process.

4.2 Pre/Post-condition Analysis

To reduce back-tracking in the search it helps to know ahé&éche which commands
may follow each other. Even if illegal combinations are glygruned during search
the large branching factor of a’iva search limits scalability.

In the PNFG language, many of the operators that modify gaate,seither by
changing boolean variables or by moving an object from ocatlon to another, assume
a specific input state. For example, the command to changme gbject variable from
false to true {obj ect . var) requires the variable be initially false, and similarlyet
object move statementgve x fromy to z) assumes the objegtis currently in
y. Note that successful execution also guarantees theirggalitput state: in the first
exampleobj ect . var is certainly true if the statement completes without emad in
the second will be in z.

These observations drive two basic analyses which we therbioe in order to
prune the branching factor. We first analyze each actionbackwarddirection, com-
puting a conservative approximation of the minimal necgssanditions for the action
to execute correctly. We then perform a very similar analysiaforward direction,
conservatively computing the output conditions. In orderdne action to follow an-
other then, output of the first must be compatible with theutmgquirements of the
second.

Analyzing Computer Game Narratives 5

In a formal sense these form symmetric dataflow problemsel€ansider our for-
ward, post-conditionanalysis, we associate with each object variable andobject
location state: in y) a value from the domaiftruefalse T}; i.e., the (incomparable)
elements true and false, along with a greatest elememepresenting a state which
may be either true or false.

The dataflow technique propagates these pairings througio@é paths starting
from the action code entry (or exit) with all variables in mokvn/inconsistent states
(T), modifying the associated domain values according to #megaction. The state-
ment+obj ect . var, for example, will in a forward sense result in an output ipair
obj ect.var:true, and in a backward sense the pairioigj ect . var: f al se. At
conditionals information is duplicated along each brararid at join points merged
by settingobj ect . st at e: T whenevembj ect . var is not the same on both sides.

A short example of the application of post-condition anislys shown in Figure 2.
In this case post-condition analysis is reasonably effectietermining the location
and the state of the candle, although not the state of theplRye-condition analysis
is symmetric, performed in the reverse direction.

(you, t ake, candl e) { candle-in-boxT, candle-in-youT , candle.lit:T, you.hurtT
nove candl e from box to you; candle-in-box:false, candle-in-you:true, candleit; you.hurt:T
if (lcandle.lit) { candle-in-box:false, candle-in-you:true, candle.lit:false, you.htrt:

+candle.lit; candle-in-box:false, candle-in-you:true, candle.lit:true, you.hurt:

} else { candle-in-box:false, candle-in-you:true, candle.lit:true, you.hurt:
+you. hurt; candle-in-box:false, candle-in-you:true, candle.lit:true, you.huretru

3} candle-in-box:false, candle-in-you:true, candle.lit:true, you.hurt:

Fig. 2. An example of post-condition analysis: dataflow information (on the righgyapagated
in a forward direction.

Upon completion of this analysis, each action has calcdlate and post-conditions.
A variable with a post-condition of true is necessarily tameaction exit, and a variable
with a pre-condition of true must be true on input if the actis to execute correctly;
symmetric for false of course. For each action pair compayitctan thus be easily
tested: if the post-conditions of actighincludeobj ect . var : a and pre-conditions of
B haveobj ect . var : b for a given object variable, then actidhcan follow actionA
as long as: C b orb C a. Actions available at each point in the state search are thus
selected according to these restrictions.

5 Experimental Analysis

We have implemented our system and examined the effecty aipdimized search on
a variety of moderate size narratives, roughly the size afaroercial game chapter. In
each case we measure the performance of the analysis systeis @pplied to a basic
winning path problem. Below we describe our benchmark sdiseuss our measure-
ment strategy, and present experimental results and aeooimg observations.

5.1 Benchmarks

Benchmarks are drawn from two main sources: the well-knoamroercial game,
Return to Zork where we have modeled the first two chapters in PNFG, and sev-
eral new narratives developed directly in PNFG by undengatsl and graduate stu-

6 Verbrugge and Zhang

dents as part of a course assignment. The latter represate@nefforts, but were re-
quired to respect some basic complexity measures, in@dudimer bounds on number
of objects, commands, solution complexity and length. @a@bkummarizes interest-
ing, static properties of our benchmarks.idédy, the state graph to be searched will
have a branching factor given by the number of commands &krid room-specific),
and a depth at least of the solution depth. Assuming any bbgt be in any room
and any room can be in any other room, the overall state spanauinded in size by
|[Rooms!%S x (|Roomg — 1)IRooms ofvars,

Benchmark | LoC | Rooms| Objs | Vars | Global | Room | Depth
Cmds| Cmds
ageorgl5 1230 9 16| 33 15 45 17
dprykh 1472 8 11| 23 40 29 13
hsafad 387 10 14| 18 2 39 12
mcheva 775 14 10 6 0 62 26
RTZ Chap 1|| 583 11 20 10 5 42 11
RTZ Chap 2| 1113 22 37| 16 4 118 19

Table 1. Benchmarks and properties: lines of code, total number of roonjesstsbboolean object
variables, commands (global and room-local), and minimum solutiothdep

5.2 Measurements

We measure performance of winnability analysis on our berazks using our opti-
mized analysis. Measurement of winnability analysis is plicated by several factors.
An exhaustive test, reporting every winning path up to amgilepth would, for instance,
provide a deterministic workload. Complete enumeratiomvisining solutions, how-
ever, is not practical—the number of possible solutions groery quickly as search
depth increases, resulting in performance being quickiyidated more by reporting
time than analysis. We avoid this problem at the cost of greatriance by measuring
only the time to find thdirst winning solution. In order to avoid skew introduced by
the order in which nodes are examined in the search, we atslmnzize the order of
actions considered as each node is expanded in the search.

Timing results are shown in the graph on the left in Figure & &ach bench-
mark and for a range of maximum search depths, a series of dl§si attempts
are performed and the average time plotted. Note that wieiteigl trends are stable
variance can be significant, as a fortunate or unfortunade modering during search
can have a large impact on an individual experiment. All ltssnere gathered on the
same quad-core Xeon 2.3GHz machine with 16GB RAM, Debiarl,61sing Java
HotSpot 1.5.014 and a 1.5GB heap, and were limited to 5 minutes per seaxchye
for DPRYKH at 6 minutes). It is important to note that these resultsesgmt orders
of magnitude improvement over previous work in this areagisi generic, SAT-based
solver, which was not able to complete given sevdeglsof execution time for RTZ
CHAPTER1, our smallest (in terms of solution depth) benchmark [5].

Impact of optimization Our optimized search process has varying performance, but
has overall impressive efficiency, finding solutions witlemr time bounds for all of

Analyzing Computer Game Narratives 7

Average Search Performance

400 T T T T :
hsafad
350 [T LA A ageorg1s 1
et RTZL o Average Branching Factor
300 mcheva e

} Naive| Opt
1 |AGEORGL5| 60 23
DPRYKH| 69 44
HSAFAD| 41 8
1 MCHEVA| 62 5
| |RTZCH. 1] 47 10
RTZ CH. 2| 122 | 10

250
200
150
100

50

Time (s)

70

Maximum Search Depth

Fig. 3. Search performance on benchmarks.

our benchmarks at most search depths. This is particuleidgst at larger depths. The
DPRYKH benchmark poses the most significant challenge for our sisalyainly due
to the high number of player commands that remain even inglim@zed search cases,
and hence large branching factor. This can also be seen italhe on the right of
Figure 3, which shows the average branching factor fivenand optimized searches.
Optimization is able to reduce this dramatically for mostdianarks, but fooPRYKH
the use of many global actions (see Table 1) limits the effectess.

Inherent winnability A striking, and initially counter-intuitive feature of adlur data
sets is the way search times tend to decrease as maximunh skgoth is increased.
Since the state space is exponential in the search deptlexpectation was that in-
creasing depth would uniformly increase search time. Tha ideFigure 3 show this is
not the case, and we may even conclude that merely incresasangh depth is a feasible
search optimization strategy, if minimal solutions are negfuired.

This behaviour can be explained in relation to a few maindiactin a general
sense finding aninimumlength solution is a harder problem than just findamy solu-
tion. Minimum length solutions tend to be few, and the nundfesolution permutations
grows very quickly if lattitude is given to contain extra saptimal actions or orderings.
This may increase the relative solution density as deptivgirand patterns in solution
densities can cause periodicity in the search performasieeel, partially explaining
the less monotonic search performanceoHEVA andAGEORGL5. For smaller narra-
tives, such as RTZ EAPTER 1, our optimized search may also have reduced the state
space to the point where it could be feasibly exhausted.ofigh this is unlikely in
general, and certainly not true for larger games, we notentttast [F games are both
finite and designed to be eventually won. Narrative gamesféea time-intensive and
have relatively low replayability—good game design avolusheed for the player to
save and reload earlier states, and thus a player who pleygathe without repetition
and without losing should always be able to eventually win.

8 Verbrugge and Zhang

6 Conclusionsand Future Work

Narrative analysis has many potential applications. Herbave investigated and shown
the practical feasibility of a basic reachability probldmat pre/post-condition analysis
is relatively independent of goal and our design could béyeastended to apply to
a variety of interesting narrative verification questidPsperties more generically de-
pending on game paths or state relations, such as “poindess[4], or constraints on
spatial locality [1] are search-related problems, andadel examined using our tech-
nigues. Further application is found in determining thehgatmore immediate game
goals (such as how to open the next door), where search sppeaiements are essen-
tial for developing online and interactive but generic antbanated game hint systems.

Acknowledgements This research was supported by the Natural Sciences and Engi
neering Research Council of Canada.

References

1. Nelson, M.J., Mateas, M., Roberts, D.L., Jr., C.L.l.: Declaeaoptimization-based drama
management in interactive fiction. IEEE Computer Graphics and Rp(8) (2006) 32—-41
2. Barros, L.M., Musse, S.R.: Towards consistency in interactmylling: Tension arcs and
dead-ends. Comput. Enterta6{3) (2008) 1-17
3. Adams, E.: The designer’s notebook: Bad game designer, noiédjpérts 1-VI. ht t p:
/ I www. gamasut r a. com(1998-2005)
4. Verbrugge, C.: A structure for modern computer narratives. CId'2002: International
Conference on Computers and Games. Volume 2883 of LNCS. (JOB) 3D8-325
5. Pickett, C.J.F., Verbrugge, C., Martineau, F.: (P)NFG: A lagguand runtime system
for structured computer narratives. In: GameOn’NA: Proceediaidee 1st Annual North
American Game-On Conference, EUROSIS (August 2005) 23-32
6. Burg, J., Boyle, A., Lang, S.D.: Using constraint logic progrémmto analyze the chronol-
ogy in “A rose for Emily”. Computers and the Humanitie44) (December 2000) 377-392
7. Lindley, C.A., Eladhari, M.: Causal normalisation: A methodologydoherent story logic
design in computer role-playing games. In: CG’2002: Internationalf€ence on Comput-
ers and Games. Volume 2883 of LNCS. (July 2002) 292-307
8. Natkin, S., Vega, L.: A Petri net model for computer games aiglysternational Journal
of Intelligent Games & SimulatioB(1) (March 2004) 37-44
9. Brom, C., Sisler, V., Holan, T.: Story manager in ‘Europe 204#s/Petri nets. In: Interna-
tional Conference on Virtual Storytelling. Volume 4871 of LNCS., Spein@@007) 38-50
10. Ardljo, M., Roque, L.: Modeling games with Petri nets. In: DIGRA Confersgriondon,
Brunel University (September 2009)
11. Tessman, K.: The Hugo Book—Hugo: An Interactive Fiction DeSlgstem. 1st edn. The
General Coffee Company Film Productions, Toronto, Canada (2004)
12. Wild, C.: ADRIFT: Adventure Development & Runner—Interacthietion Toolkit, version
4.0 manual. (200Nt t p: // www. adri ft. org. uk.
13. Nelson, G., Seebach, P., Firth, R., Plotkin, A., Short, E.: inforhtt p://wwuv.
informfiction.org/ (1993)

