
Analyzing Computer Game Narratives

Clark Verbrugge and Peng Zhang⋆

School of Computer Science, McGill University
Montréal, Qúebec, Canada, H3A 2A7

{clump,pzhang13}@cs.mcgill.ca

Abstract. In many computer games narrative is a core component with the game
centering on an unfolding, interactive storyline which both motivates and isdriven
by the game-play. Analyzing narratives to ensure good properties is thus impor-
tant, but scalability remains a barrier to practical use. Here we develop a formal
analysis system for interactive fiction narratives. Our approach is based on a rela-
tively high-level game language, and borrows analysis techniques from compiler
optimization to improve performance. We demonstrate our system on a variety
of non-trivial narratives analyzing a basic reachability problem, the path to win
the game. We are able to analyze narratives orders of magnitude largerthan the
previous state-of-the-art based on lower-level representations. This level of per-
formance allows for verification of narrative properties at practical scales.

Key words: game narrative,verification,optimization,performance analysis

1 Introduction

Narrative is a central feature of many computer games, extending from text-based inter-
active fiction to current adventure, RPG, and mixed genres. For such games a number of
narrative properties become important to an immersive gameexperience, including log-
ical consistency, continuity of story elements [1], level of “tension” or atmosphere [2],
as well as game-play issues such as ensuring player progress, and adequate coverage of
potential player choices [3, 4]. The complexity of larger narratives, however, can make
formal analysis of narratives difficult. For analysis of long game segments or existing,
complete narratives the combinatorial explosion implied by a rich set of player choices
and game content elements results in scaling issues, limiting conservative verification
of narrative properties.

In this work we develop an efficient system for analyzing complex game narratives.
Our approach is based on an exhaustive analysis of the narrative state-space, and thus
applies to general reachability problems. To improve scalability, we extract high-level
game information from game code by applying program analysis techniques more tra-
ditionally found in the compiler optimization domain. Thisinformation is used within
an optimized search to reduce the branching factor and improve performance.

We illustrate our design by examining a fundamental exampleof reachability, the
path to win the game. In this context we analyze a variety of non-trivial narratives

⋆ Now at Microsoft:pezhang@microsoft.com.

2 Verbrugge and Zhang

derived from both commercial and amateur interactive fiction games. Using our opti-
mized state search, we are able to determine winnability within seconds to minutes on
a modern machine. These results dramatically improve on previous, low-level work on
formal winnability analysis, which has been limited to narrative inputs orders of mag-
nitude smaller [5]. The ability to perform reachability analyses on narratives of much
larger scales shows that formal verificaton of a wide varietyof properties can be feasibly
performed on non-trivial, industrial-size game narratives.

Contributions of our work include the design of a complete system for reachability
analysis of computer game narratives, an optimized search based on a novel dataflow
analysis, and non-trivial experimental investigation of basic winnability. In the sections
that follow we give related work and contextual background for our research, followed
by our system design and results.

2 Related Work

Our approach to game narratives aims at analysis/verification in order to improve design
and thus player experience. A number of other works have alsoidentified and formal-
ized narrative properties that players find pleasing, disruptive, or which may improve
story generation. Adams, for instance, proposed basic guidelines for industry devel-
opers in a series of online articles [3], where among many other properties the prob-
lem of narrative game-play being allowed past the point of winnability was presented;
Verbrugge formalized this notion as “pointlessness.” [4].Barros and Musse proposed
a model designed to ensure pace/tension [2], and Nelson et al. defined properties re-
lated to the spatial locality of actions, as well as motivational or logical continuity of
events [1]. Logic-based approaches are popular in this context, and have been applied
to verify the time-line of a non-linear story [6], and ensurelogical correctness and con-
tinuity of events [7]. Petri net models have also been proposed and used to represent
narratives for both story construction and analysis [4, 8–10]. Our work here builds on
previous experience in winnability analysis, applying a generic SAT-based solver to a
Petri net model of game narratives [5].

In this work wepost-factoanalyze narratives manually developed as text-based,
interactive fiction adventures. Although text-based IF games are an older genre, they
have had as a whole a strong influence on more modern interactive fiction, adventure,
and RPG game design. An active community continues to exist as well, and a number of
IF authoring kits are available as products on their own [11,12] or in terms of extensions
built on older commercial offerings [13]. To limit technical complexity in isolating
narrative structure, we have based our design on the PNFG language for interactive
fiction [5].

3 Narrative Model

Analysis of game narratives assumes of course a suitable representation. As mentioned
in the previous section, we make use of a language for constructing interactive fic-
tion (IF) games,PNFG [5]. The IF genre has the advantage of consisting of complex
narratives, relatively easily extracted from the game architecture. The PNFG format is

Analyzing Computer Game Narratives 3

preferred over more full-featured languages such as Inform[13] as a simplified, but
complete IF language with a well-defined semantics and reduced syntax.

IF Properties. An interactive fiction narrative provides a minimal, typically text-
based virtual environment. A player avatar is controlled through textual input forming
game commands, and the current or resulting game state is reported by textual output.
Game-play is turn-based, and usually involves explorationof an interconnected series of
rooms, wherein the player (avatar) may examine, move, and otherwise manipulate game
objects. Appropriate actions unlock or control narrative progress, moving the player
from an initial state to either a winning or losing conclusion.

Basic game control flow is straightforward. After initialization, the game waits in
an idle state for user input; user commands trigger game actions, which can result in
either a game win, loss, or (more typically) a return to the idle state following any post-
turn processing. The complexity of game state is an important property to analysis.
In IF games critical game state consists of simple object properties, such as a room
being lit or unlit, as well as the object containment hierarchy—the location of each
object, including the player’s inventory. Counters and dynamic object allocation can
add further complexity, although games are usually finitelybounded, with a small limits
on counters and a fixed maximum number of available game objects.

PNFG. The PNFG language provides a minimal model of IF game structure. Game
objects and rooms are defined along with boolean state variables, and containment is
internally represented by further boolean state (x (not) in y for all objectsx and lo-
cationsy). User commands invoke code which can set and unset object states, move
objects between locations, as well as branch conditionallyon object state or location.
Syntatic sugar is provided for a number of further common IF constructs, including
finite counters, scoping of game commands; more language details can be found in [5].

4 Narrative Analysis

Our overall approach to narrative analysis is illustrated in Figure 1. PNFG game spec-
ifications are subject to initial, high-level analysis, which is then used in conjunction
with the game’s interpretable (compiled “NFG”) form as partof an optimized search of
the game state space. The subsections below describe the basic search behaviour and
our optimization.

Fig. 1. Overall system design.

As an example of useful narrative analysis,
and to give our study a specific analysis goal,
we investigate the general problem of comput-
ing “winnability.” This involves identifying the
sequence of commands that bring a player from
an initial state to a winning game completion. As
well as verifying a fundamental game property
(the game should be winnable), finding one or all
“winning paths” is an instance of the more general
problem of efficiently determining state reachabil-
ity, and our techniques can be easily abstracted from the winnability goal and applied
to other search problems.

4 Verbrugge and Zhang

4.1 Basic search

The basic state-space search proceeds as a back-tracking, depth-first search of reachable
game states, applying all possible game commands at each state. Game state is inter-
nally stored in terms of the state of the internal NFG representation, but is not directly
accessed by the search system. Reachability and progress are instead determined by the
ability of a game interpreter incorporated into the system to apply a given command,
monitoring for win, lose or error conditions.

A number of generic optimizations improve performance of this näıve, brute-force
approach. Cycle detection is an effective tool for most narratives. Many games, for ex-
ample, tend to permit a variety of commands such as “look,” “examine,” or command
sequences such as “take x, drop x” that do not overall modify game state, but never-
theless contribute to the branching factor and lengthen search paths. Our system thus
maintains a stack of states during its DFS activity, and truncates searches containing
states previously encountered in the current game search path. Caching is also used
across search branches in order to avoid “dead-ends,” or states which have no legal
actions that can lead to a game win (i.e., all actions lead to either losing, errors, or
dead-ends). These states are cached, and used to further prune the state space search.

Although these optimizations are effective, larger narratives have many commands
and objects as well as potentially long solution depths, andfor practical analysis a
very small branching factor and/or good search heuristics are required. Our approach
applies dataflow analysis techniques more typically used incompiler optimization to
extract game information in order to further improve performance. Below we describe
our primary techniques for optimizing the search process.

4.2 Pre/Post-condition Analysis

To reduce back-tracking in the search it helps to know ahead of time which commands
may follow each other. Even if illegal combinations are quickly pruned during search
the large branching factor of a naı̈ve search limits scalability.

In the PNFG language, many of the operators that modify game state, either by
changing boolean variables or by moving an object from one location to another, assume
a specific input state. For example, the command to change a game object variable from
false to true (+object.var) requires the variable be initially false, and similarly, the
object move statement (move x from y to z) assumes the objectx is currently in
y. Note that successful execution also guarantees the resulting output state: in the first
exampleobject.var is certainly true if the statement completes without error,and in
the secondx will be in z.

These observations drive two basic analyses which we then combine in order to
prune the branching factor. We first analyze each action in abackwarddirection, com-
puting a conservative approximation of the minimal necessary conditions for the action
to execute correctly. We then perform a very similar analysis in a forward direction,
conservatively computing the output conditions. In order for one action to follow an-
other then, output of the first must be compatible with the input requirements of the
second.

Analyzing Computer Game Narratives 5

In a formal sense these form symmetric dataflow problems. If we consider our for-
ward, post-conditionanalysis, we associate with each object variable andx, y object
location state (x in y) a value from the domain{true,false,⊤}; i.e., the (incomparable)
elements true and false, along with a greatest element⊤, representing a state which
may be either true or false.

The dataflow technique propagates these pairings through all code paths starting
from the action code entry (or exit) with all variables in unknown/inconsistent states
(⊤), modifying the associated domain values according to the game action. The state-
ment+object.var, for example, will in a forward sense result in an output pairing
object.var:true, and in a backward sense the pairingobject.var:false. At
conditionals information is duplicated along each branch,and at join points merged
by settingobject.state:⊤ wheneverobject.var is not the same on both sides.

A short example of the application of post-condition analysis is shown in Figure 2.
In this case post-condition analysis is reasonably effective, determining the location
and the state of the candle, although not the state of the player. Pre-condition analysis
is symmetric, performed in the reverse direction.

(you,take,candle) { candle-in-box:⊤, candle-in-you:⊤, candle.lit:⊤, you.hurt:⊤
move candle from box to you; candle-in-box:false, candle-in-you:true, candle.lit:⊤, you.hurt:⊤
if (!candle.lit) { candle-in-box:false, candle-in-you:true, candle.lit:false, you.hurt:⊤

+candle.lit; candle-in-box:false, candle-in-you:true, candle.lit:true, you.hurt:⊤
} else { candle-in-box:false, candle-in-you:true, candle.lit:true, you.hurt:⊤

+you.hurt; candle-in-box:false, candle-in-you:true, candle.lit:true, you.hurt:true
}} candle-in-box:false, candle-in-you:true, candle.lit:true, you.hurt:⊤

Fig. 2. An example of post-condition analysis: dataflow information (on the right) ispropagated
in a forward direction.

Upon completion of this analysis, each action has calculated pre and post-conditions.
A variable with a post-condition of true is necessarily trueon action exit, and a variable
with a pre-condition of true must be true on input if the action is to execute correctly;
symmetric for false of course. For each action pair compatibility can thus be easily
tested: if the post-conditions of actionA includeobject.var:a and pre-conditions of
B haveobject.var:b for a given object variable, then actionB can follow actionA
as long asa ⊑ b or b ⊑ a. Actions available at each point in the state search are thus
selected according to these restrictions.

5 Experimental Analysis

We have implemented our system and examined the effects of our optimized search on
a variety of moderate size narratives, roughly the size of a commercial game chapter. In
each case we measure the performance of the analysis system as it is applied to a basic
winning path problem. Below we describe our benchmark suite, discuss our measure-
ment strategy, and present experimental results and accompanying observations.

5.1 Benchmarks

Benchmarks are drawn from two main sources: the well-known commercial game,
Return to Zork, where we have modeled the first two chapters in PNFG, and sev-
eral new narratives developed directly in PNFG by undergraduate and graduate stu-

6 Verbrugge and Zhang

dents as part of a course assignment. The latter represent amateur efforts, but were re-
quired to respect some basic complexity measures, including lower bounds on number
of objects, commands, solution complexity and length. Table 1 summarizes interest-
ing, static properties of our benchmarks. Naı̈vely, the state graph to be searched will
have a branching factor given by the number of commands (global and room-specific),
and a depth at least of the solution depth. Assuming any object can be in any room
and any room can be in any other room, the overall state space is bounded in size by
|Rooms||Objs| × (|Rooms| − 1)|Rooms| × 2|Vars|.

Benchmark LoC Rooms Objs Vars Global Room Depth
Cmds Cmds

ageorg15 1230 9 16 33 15 45 17
dprykh 1472 8 11 23 40 29 13
hsafad 387 10 14 18 2 39 12
mcheva 775 14 10 6 0 62 26
RTZ Chap 1 583 11 20 10 5 42 11
RTZ Chap 2 1113 22 37 16 4 118 19

Table 1. Benchmarks and properties: lines of code, total number of rooms, objects, boolean object
variables, commands (global and room-local), and minimum solution depth.

5.2 Measurements

We measure performance of winnability analysis on our benchmarks using our opti-
mized analysis. Measurement of winnability analysis is complicated by several factors.
An exhaustive test, reporting every winning path up to a given depth would, for instance,
provide a deterministic workload. Complete enumeration ofwinning solutions, how-
ever, is not practical—the number of possible solutions grows very quickly as search
depth increases, resulting in performance being quickly dominated more by reporting
time than analysis. We avoid this problem at the cost of greater variance by measuring
only the time to find thefirst winning solution. In order to avoid skew introduced by
the order in which nodes are examined in the search, we also randomize the order of
actions considered as each node is expanded in the search.

Timing results are shown in the graph on the left in Figure 3. For each bench-
mark and for a range of maximum search depths, a series of 10 analysis attempts
are performed and the average time plotted. Note that while general trends are stable
variance can be significant, as a fortunate or unfortunate node ordering during search
can have a large impact on an individual experiment. All results were gathered on the
same quad-core Xeon 2.3GHz machine with 16GB RAM, Debian 2.6.18, using Java
HotSpot 1.5.014 and a 1.5GB heap, and were limited to 5 minutes per search (except
for DPRYKH at 6 minutes). It is important to note that these results represent orders
of magnitude improvement over previous work in this area using a generic, SAT-based
solver, which was not able to complete given severaldaysof execution time for RTZ
CHAPTER 1, our smallest (in terms of solution depth) benchmark [5].
Impact of optimization Our optimized search process has varying performance, but
has overall impressive efficiency, finding solutions withinour time bounds for all of

Analyzing Computer Game Narratives 7

 0

 50

 100

 150

 200

 250

 300

 350

 400

 10 20 30 40 50 60 70

T
im

e
(s

)

Maximum Search Depth

Average Search Performance

hsafad
ageorg15

RTZ1
mcheva

RTZ2
dprykh

Average Branching Factor
Näıve Opt

AGEORG15 60 23
DPRYKH 69 44
HSAFAD 41 8
MCHEVA 62 5

RTZ CH. 1 47 10
RTZ CH. 2 122 10

Fig. 3. Search performance on benchmarks.

our benchmarks at most search depths. This is particularly evident at larger depths. The
DPRYKH benchmark poses the most significant challenge for our analysis, mainly due
to the high number of player commands that remain even in the optimized search cases,
and hence large branching factor. This can also be seen in thetable on the right of
Figure 3, which shows the average branching factor for naı̈ve and optimized searches.
Optimization is able to reduce this dramatically for most benchmarks, but forDPRYKH

the use of many global actions (see Table 1) limits the effectiveness.

Inherent winnability A striking, and initially counter-intuitive feature of allour data
sets is the way search times tend to decrease as maximum search depth is increased.
Since the state space is exponential in the search depth, ourexpectation was that in-
creasing depth would uniformly increase search time. The data in Figure 3 show this is
not the case, and we may even conclude that merely increasingsearch depth is a feasible
search optimization strategy, if minimal solutions are notrequired.

This behaviour can be explained in relation to a few main factors. In a general
sense finding aminimumlength solution is a harder problem than just findinganysolu-
tion. Minimum length solutions tend to be few, and the numberof solution permutations
grows very quickly if lattitude is given to contain extra sub-optimal actions or orderings.
This may increase the relative solution density as depth grows, and patterns in solution
densities can cause periodicity in the search performance as well, partially explaining
the less monotonic search performance ofMCHEVA andAGEORG15. For smaller narra-
tives, such as RTZ CHAPTER 1, our optimized search may also have reduced the state
space to the point where it could be feasibly exhausted. Although this is unlikely in
general, and certainly not true for larger games, we note that most IF games are both
finite and designed to be eventually won. Narrative games areoften time-intensive and
have relatively low replayability—good game design avoids the need for the player to
save and reload earlier states, and thus a player who plays the game without repetition
and without losing should always be able to eventually win.

8 Verbrugge and Zhang

6 Conclusions and Future Work

Narrative analysis has many potential applications. Here we have investigated and shown
the practical feasibility of a basic reachability problem,but pre/post-condition analysis
is relatively independent of goal and our design could be easily extended to apply to
a variety of interesting narrative verification questions.Properties more generically de-
pending on game paths or state relations, such as “pointlessness” [4], or constraints on
spatial locality [1] are search-related problems, and could be examined using our tech-
niques. Further application is found in determining the path to more immediate game
goals (such as how to open the next door), where search speed improvements are essen-
tial for developing online and interactive but generic and automated game hint systems.

Acknowledgements This research was supported by the Natural Sciences and Engi-
neering Research Council of Canada.

References

1. Nelson, M.J., Mateas, M., Roberts, D.L., Jr., C.L.I.: Declarative optimization-based drama
management in interactive fiction. IEEE Computer Graphics and Appl.26(3) (2006) 32–41

2. Barros, L.M., Musse, S.R.: Towards consistency in interactive storytelling: Tension arcs and
dead-ends. Comput. Entertain.6(3) (2008) 1–17

3. Adams, E.: The designer’s notebook: Bad game designer, no twinkie! parts I–VI. http:
//www.gamasutra.com (1998–2005)

4. Verbrugge, C.: A structure for modern computer narratives. In: CG’2002: International
Conference on Computers and Games. Volume 2883 of LNCS. (July 2002) 308–325

5. Pickett, C.J.F., Verbrugge, C., Martineau, F.: (P)NFG: A language and runtime system
for structured computer narratives. In: GameOn’NA: Proceedingsof the 1st Annual North
American Game-On Conference, EUROSIS (August 2005) 23–32

6. Burg, J., Boyle, A., Lang, S.D.: Using constraint logic programming to analyze the chronol-
ogy in “A rose for Emily”. Computers and the Humanities34(4) (December 2000) 377–392

7. Lindley, C.A., Eladhari, M.: Causal normalisation: A methodology for coherent story logic
design in computer role-playing games. In: CG’2002: International Conference on Comput-
ers and Games. Volume 2883 of LNCS. (July 2002) 292–307

8. Natkin, S., Vega, L.: A Petri net model for computer games analysis. International Journal
of Intelligent Games & Simulation3(1) (March 2004) 37–44

9. Brom, C., Sisler, V., Holan, T.: Story manager in ‘Europe 2045’ uses Petri nets. In: Interna-
tional Conference on Virtual Storytelling. Volume 4871 of LNCS., Springer (2007) 38–50

10. Aráujo, M., Roque, L.: Modeling games with Petri nets. In: DiGRA Conference, London,
Brunel University (September 2009)

11. Tessman, K.: The Hugo Book—Hugo: An Interactive Fiction DesignSystem. 1st edn. The
General Coffee Company Film Productions, Toronto, Canada (2004)

12. Wild, C.: ADRIFT: Adventure Development & Runner—InteractiveFiction Toolkit, version
4.0 manual. (2003)http://www.adrift.org.uk.

13. Nelson, G., Seebach, P., Firth, R., Plotkin, A., Short, E.: Inform. http://www.
inform-fiction.org/ (1993)

