McGill University
School of Computer Science
Game Research at McGill

Path-finding for Large Scale Multiplayer Computer Games

GRO@M Technical Report No. 2006-2

Marc Lanctot Nicolas Ng Man Sun Clark Verbrugge
School of Computer Science
McGill University, Montréal, Canada, H3A 2A7
marc.lanctot @il .ncgill.ca nngman@s.ncgill.ca clunmp@s.ncgill.ca

July, 2006

gram.cs.mcgill.ca

1 Introduction

Current, state-of-the-art approaches to path-finding in computer gac@mporate multiple, hierarchical
levels of searching and exploit a wide variety of searching heuristics. ir@erest stems from a need to
find good path-finding performance in the context of a researchdi{aszssively) multiplayer environment.
Large multiplayer games impose a general need to scale operations, whatigutations are done on
multiplayer servers or intelligent clients that manage multiple game entities, andisideation of how
well path-finding computations can be combined or reused is important. Othee-gpecific properties
may also affect performance of the system. These include the relativetydatances travelled (less dense
points of interest), the presence of varying density of map obstaclethafetquent use of teams, and thus
the occasional use of strategized and collective movement. Understahdiimgluence of genre-specific
properties of game workloads may also be important to efficient algorithndesign choices.

We investigate the performance of several path-finding implementation desittin theMammothmulti-
player game research infrastructure. Using a selection of workloansriindom data to player movement
traces from a non-trivial multiplayer game we analyze the performancéferfaht design and optimization
choices in path-finding implementation. Our data shows the impressive effactrarchical approaches,
particularly when underlying map data informs the hierarchy design, butldsgreat amount of opportu-
nity for cache-based optimizations that exploit repetition in game player actiloskload choice affects
performance, but is generally overwhelmed by the algorithm performance

Contributions of this work include:

e An experimental study of four path-finding approaches under difter@ching assumptions in a research
multiplayer game framework.

e Our data and experimentation is based on analysis of real player moveatanfram a non-trivial
multiplayer, team-based game.

e We provide an experimental comparison between three different forpestioffinding workload.

Below we present related work, followed by a description of our basic impl&tien environment and
movement models. We then present our test methodology, the kinds of dgtiveeed under what scenar-
ios. Discussion of the data is followed by conclusions and a descriptiantbief work.

2 Related Work

Path-finding in computer games is commonly approached as a graph seabignp The world is decom-
posed, abstracted as a graph model, and searched, typically using aoam: of IDA* [9], based on the
well-known A* [5] algorithm. Underlying world decompositions can have anigant impact on perfor-
mance. Common approaches include those based on uniformly shapedgcidss square or hexagonal
tilings [17], as well as the use of quadtrees [3, 4] or variable shapedi¢for adaptivity to more arbitrary
terrain boundaries. Properties of the decomposition, its regularity, xiby\va Voronoi guarantees, as well
as geometric computations, such as visibility graphs, or even heuristic rpadfaanation [7] can then be
used to improve search efficiency.

Hierarchical path-finding incorporates multiple graph or search-spe@mempositions of different granular-
ity as a way of reducing search cost, perhaps with some loss of optimalityretiécal information has been
used to improve A* heuristics [6], and proposed in terms of using moreaabsineta-information already

Figure 1: A screenshot of the Mammoth client.

available in a map, such as doors, rooms, floors, departments [10]dbessn-specific are graph reduction
techniques based on recursively combining nodes into clusters to foreraadhical structure [16]. Our

approach here is most closely based on the HPA* multi-level hierarchésadd, where node clustering
further considers the presence of collision-free paths between [@jdes

Path-finding can also be based on the physics of dynamic characteciitterdn strategies based on po-
tential fields [8] or more complex steering behaviours [15, 1] a charagtath is determined by its reaction
to its environment. This reactive approach can be combined with seaseld-b@odels to improve heuristic
choices during searching [14]. There are many possible heuristicplitein our implementations we use
a “diagonal distance” metric to approximate the cost of unknown movemaht [1

3 Implementation Environment

3.1 Environment

The environment used for implementation was Mammoth [11]: a Java-basexE2bead-view multi-player
game and research framework. The main goal of the ongoing Mammoth tpiojecprovide a common
platform to facilitate the implementation of research experiments. A screendimvig in Figure 1.

Mammoth allows human players to connect to and immerse themselves into a faiglgtatgntricate virtual
environment (the world). Within the Mammoth world players can explore theipalsetting (the map) and
interact with world objects: static objects (walls, trees) and dynamic objectss(itether players). All
objects are represented as polygons. The world is partitioned into irrggsiteaped regions callezbnes
Physically, each zone corresponds to a collection of world objects. rtwach zone determines the
objects that clients must be aware of given the player’s current locatitypical zone in Mammoth would
be a room within a building. Zones are connectedtréasition gates physical entities which act as the
entry and exit points between zones.

The coordinate system used in the Mammoth mdp,ig) < [0, 30] x [0, 30] C %?; the origin(z, y) = (0,0)

is graphically placed at the bottom-left of the space. Each world objed pasition a pair of real values

(z andy), a zone ID, and atairlevelcorresponding to its distance in discrete levels relative to the ground
(stairlevel 0). Figure 2 gives a visualization of the map.

Figure 2: A wireframe view of the Mammoth map. The color of each rectamgdicates its type: white for a simple
texture/image, red for a static object, blue for a played, green for an item.

3.2 Movement and Pathfinding

Player movement in Mammoth can be effected in one of two main fashions: arbasement scheme
where the player has fine-grained control, and a more complex systexa baslgorithmic path-finding.
The former allows for complete and highly-intentional control, and is the mainadatbed for movement
in our initial game implementation. This basic movement model is performed by thergalecting a
destination point on the map through a mouse click. The player then moves aighstine path towards
their destination, stopping when they reach their destination or become 8lbgkan obstacle. Collision
detection is performed by checking if the player’'s new position leads to arap/between the player’s
shape and an obstacle’s shape. Maximal control is allowed by letting ar [glelya new destination at any
time along its currently-planned path, in which case the player immediately starisgriowards the new
destination instead.

The implementation of the path-finding algorithm is based on the classic A* algofh Our design
operates on 2 levels, following the general ideas of a hierarchicalfipating system as outlined by Botea
et al. [2].

At the lower or “grid” level, the game world is effectively discretized into a Brgad. This is performed
using the concept of a “ghost player.” The ghost player is a spatii®y enaintained by Mammoth'’s physics
engine: it abides by the same physical rules as any regular playertéRagfi is invisible and only exists
temporarily. The A* algorithm searches the world by moving the ghost playemd in discrete steps. This
method has a few advantages over a regular grid partitioning appropeklitra memory is only required
for the region that is currently being explored and not for the entire njaprfamic map changes are easily
accommodated, and 3) the granularity of the steps with which the ghost pleyes can be adjusted to
accommodate the density of objects within a zone or to more closely mesh with theédr@s of non-axis-
aligned obstacles, as shown in Figure 3.

Since our map is set in a urban environment, the presence of rooms witlva@oor staircases provides

s

(@) (b)

Figure 3: Variable grid level

Figure 4: An example path calculation. Dotted curves representlgxidt paths.

a natural way to decompose the world at a higher level. We analyze thditramgmtes already present in
the Mammoth map and use that information to derive a connectivity graph wherenode is a zone and
transition gates establish edges between them. This approach is partidi#suiteel for our work since our
lower grid-based level is never explicitly generated or kept for the emtie, and thus cannot be the basis
for a higher level abstraction as is done in other hierarchical pathfirsgipgoaches.

Pathfinding at the zone-level occurs by first connecting the start posiigpointsor transition gates to the
zone-level graph, searching the graph using the A* algorithm, and finalipecting the path to the final
destination point.

The following example is illustrated in Figure 4. Suppose plaifeat positionA, in zoneZ;, wants to
travel to positionB, in zoneZ;,. The zone-level path is found to B, Zs, Z11, Z12). Then, individual
grid-level paths are gradually resolved between the source, transities, @nd destination.

As an acceleration technique, once a player leaves a zone, that zonekesdlraa blocked and will not
be searched while refining the path to the next waypoint. This helps to furthedown the number of
unnecessary nodes that A* has to explore before finding a path.

In most games, and especially in a multiplayer environment, players tend tosggwaths that have been
previously traversed. Caching is thus expected to have a large impaetrfmmnpance. We used 2 main

(a) (b)

Figure 5. a) Exhaustive A* search without path cache b) Once cachedglsiag for a path between the same points
is much more focused.

types of data caching:

e Path caching at the grid level. Our approach works in the following wayedgh point on a computed
path, we only store the next point on the way to the destination point. For éxatmgo from point
to P;, we only need to know at;Rhat our next move should be Rhen at B move to B, and so on. A
further improvement is done by abstracting every position at the griddeelarger grid so that several
grid-level positions will actually map to the same cache node. The combinatithresd 2 techniques
can help to reduce memory requirement and at the same time increase caatie bitmpared to a more
brute-force approach of storing complete paths at each point. Figuretalies how the grid path cache
helps A* in practice.

e Collision caching. Every move made at the grid level requires checkingditision. Querying the
Mammoth architecture for this is expensive. By caching this information fostitéc environment, we
expect to see a significant saving in time.

We used existing, pre-defined zones to build an abstract, high-leveéctivity graph. This has the disad-
vantage that since the outside area in our map was mainly representedagezene only the lower-level,
grid-based pathfinding is used for a large part of the map. We haveliniseestigated the use of a roadmap
planner based on actual player movement, as sampled from real gameplayanvironment. Roadmap
connectivity is built by performing visibility checks between the most commonbtuing sample points.
The roadmap is attached to exit waypoints of all buildings, integrating with tisérexhierarchial approach
and serving as a middle layer between the zone-level and grid-level eFéghrows the hierarchy at work.

A final variation in hierarchy is to build a more balanced upper-level decositipn that has some relation
to expected player movement. Based on ititerest pointsgathered during the course of our workload
generation (see next Section) we thus construct a Voronoi diagrainysenthe computed regions for our
“Voronoi zoning” scheme. Actual waypoints for these zones are cosdgnom the midpoints of the edges
in the corresponding Delaunay triangulation, and are intended to repriesations where players may
enter/exit popular regions.

4 Methodology

We conducted several experiments under different movement modehpssns, and investigated the per-
formance as it varied due to different workloads. Three basic wadkl@ae used during our simulations,

Figure 6: An example path found in our simulations showing a) the Zemel path generated and b) the actual path
taken by the player

two of which are based on points automatically recorded from real playgemments. In the first set,
interest points are chosen from a uniform distribution of map coordinttissrepresents data easy to ac-
qguire/generate, but quite artificial, and thus potentially inaccurate. The ttioesets of interest points
are from actual gameplayOperation: Orbiuswas organized to collect data from players during several
multi-player gaming sessions, and is discussed in detail below. One datdresh ian abstract model of
Orbius game-play, where interest points are mainly defined from a rdjesivell list of the most travelled
locations over a series of games. The third set represents the actisabppltyers in the game, constructed
from the Orbius game movements.

4.1 Measurements

We use several metrics to evaluate the quality of the different pathfindihgitpes.

o total time taken: a quick measure of performance.

o total distance traveled: a measure of path optimality. The grid based appsioagld always return the
shortest path because it computes globally optimal solutions, while greater tiee hierarchy should
imply less optimal paths. It is interesting to compare the penalty in path optimality atfangain in
time.

e number of nodes explored: a measure of the efficiency of the algorithmerFedes usually implies
smaller total time and smaller memory usage as well. We expect collision caching twvartpe total
time without actually changing number of nodes explored, while path cachimgd do the same but
by reducing the number of nodes explored. A more accurate heuristitdstuother reduce the number
of explored nodes; a high-level abstraction that accurately captwréspblogy of the map should help
make the low-level search more efficient.

e average delays before the player starts moving: measures how regpibilesgame is after the player
issues a pathfinding query. This can help evaluate player satisfaction.

Figure 7: A screenshot of two adversaries tickling each other, skeda lying on the ground, and a red team'’s base
during Operation: Orbius

4.2 Orbius

Orbiusis a Mammoth sub-game: a goal-oriented game played within the Mammoth world withpathe

ticipating players. Orbius is a team-based subgame in which players collutterinpato win before every

other team. The game is designed to reflect the generally understoodduetaflarger-scale multiplayer
games: players are grouped (teams), map exploration is critical, bothaiaestfcity, interior) and uncon-
strained (outdoor) movement areas are present, and different maptsdaave different levels of interest
to players.

In Orbius, players find and collect special items cabiellswhich are associated with teams using colours.
The team’s goal is to find theglowing orband deposit it into an opponent tearhasewhile still keeping

at least one base of their own intact. A base is formed when a team collects each size (five sizes in
total) of their team’s orbs and deposits them into a particular, arbitrarily sdleotgainer (the base), such
as a trash can, bookcase, etc.. Once a base container is chosemtéigecstarts to glow and a glowing
orb of the team’s colour is spawned at a random position on the map. Ptarensteract in two ways: by
tickling (once every ten seconds) and lbgse dismantlingonce every ten seconds). If a player attempts
to tickle another, there is a 50% chance that the ticklee will drop a random fteris €arrying, otherwise
the tickler drops a random item. To dismantle an opponent team’s base, a gilapty needs to remove
one of the five required orbs. Players can defend their bases by ibefhg vicinity of their base or the
dismantler; for each defender there is a cumulative 15% chance that thentis attempt fails which leads
to the dismantler dropping a random item. Players cannot dismantle their oghéesuse this would too
easily prevent opposing teams from achieving their goal. Finally, whersa isadismantled, the glowing
orb which was spawned from the base disappears. A screenshdtiab@ presented in Figure 7.

Twenty-four (24) game players participated in Dperation: Orbiusevent. In total, 5 games sessions were
played, each having 6 teams of 4 players. Teams were not changecchajammes to encourage natural
strategy development between players. Two types of data were logged the game-playing: a player’s
set destination action, and a player’s actual move update at each timeate.ch action, the game server
logged the current time, the action type, the player ID, the player’s neitiqgom the case of a move update
or the player’s current position and selected destination otherwise.

A snippet of the run logs is given in Figure 8.

1149808297073 MW 5053 18. 197 27.362 0 15
1149808297099 W 5053 18.189 27.332 0 15
1149808297127 W 5053 18.182 27.303 0 15
1149808297155 W 5053 18.176 27.274 0 15
1149808297182 SD 5052 18.5 27.8 0 15 18.267 26.688 0 15
1149808297183 SD 5052 18.5 27.8 0 15 18. 267 26.688 0 15

Figure 8: Logged Data. Positions are denoted by four values in thevidlig order:x y stairl evel zoneid.

4.3 Orbius-Based Data

Interest points chosen randomly on the Mammoth map may or may not corcesgfitbrmap locations ac-
tually visited by real players. Actual game behaviour may in general biasment, and thus performance.
To consider this bias in our workload we not only analyze random-gtetepath data, but also data derived
from a model of player movement, and data from a set of actual playes.path

Our movement model is intended to reflect common player movements, and ssiemaigied which map
areas were most frequently traversed. The game space is discretZed gead-level pathfinding), and an
interest graderepresenting the total number of times that each grid cell was occupieddyameplay was
calculated. To further generalize the data interest maps are then pasagghth series of transformations:
blurring, localization andaverage compositionAfter each transformation, the interest grade values are
normalized.

¢ Blurring simultaneously sets each interest grade to the average of its immesgliateighborhood,
including diagonal neighbours.

e Localization simultaneously sets each interest grade to itself plus the sumightoring influences”.
Here, a “neighboring influence” is the interest grade of a nearby gilldveighted inversely by the
distance between the two cells, up to a maximum considered distance.

e Averaging allows us to combine experimental data from different runse&ch grid cell in our final
output grid its interest grade is the average of the interest grades feocotresponding grid cells of
the original game runs.

The highest-valued interest points indicate the most often travelled aneeferm the basis of our modeling
workload (and our Voronoi zoning) approach. The top points aretsleconsidering a minimum spread
distance between interest points; these then form the set of possiblenstgath destinations during ran-
dom path generation.

Paths actually derived from the Orbius data are our most closely reypatige movement data. For this the
paths were derived in the following manner. For each player we find tha (nand standard deviation’)

of the intervals between that player’s successive move updates.dist¢he) which are sufficiently above
the expected value)¢t > T') are considered “stop points”; two successive start/end position jpgiresent
a path taken by the player. The threshold value is arbitraily chosenTobe: + ko, with & = 1 in our
experiments. The connected update segments are then used to build owothimhd path data set.

Run | At (sec) MV SD
899| 98619| 10970
903| 202563 32526
740| 146142| 34878
894|124613| 54414
798| 175435| 60024
Average 849| 149474| 38562

b wnN -

Table 1: Summary of the collected movement data. Listed are the rombey elapsed time, number of movement
updates (MD), and the number of set destination actions.(SD)

5 Experimental Analysis

To measure performance, we used a modified (isolated) version of the Manstand-alone client. A
single player was setup and had to move to 100 destination points usingmtiffatafinding algorithms and
under different cache parameters.

A summary of the data gathered frd@peration: Orbiusis given in Table 1. During the first and second
games, most players were still getting familiar with the game. Therefore to aiasddresults only runs
3-5 are used for analyses. Figure 9 shows several interest mapsesshetived interest points from some of
the movement data.

5.1 Path-finding Results

Three forms of path workload were considered\NROM: a basic workload derived from randomly chosen
start and end destinations,ELED: a workload based on paths chosen from random Orbius points of
interest (shown in Figure 10), anckERACTED: a workload consisting of paths extracted from the individual
player movements in Orbius. These inputs provide a set of workloads edeadbe progressive in accuracy,
and difficulty of acquisition. Cache sizes were set to 1Meg, and did natdilin our tests—this data
represents the results of an ideal cache environment, with no collisiondestdl were performed on an
8-way Xeon MP 2.7GHz, 8Gig of RAM, using Sun JDK-1.5)8 under Gentoo.

Tables 2, 3, and 4 show a breakdown of the test results for our thtedipding implementations based
on static zoning (SZ), no hierarchy (GR), use of roadmap (RD), amdrd zoning (VZ), either alone or
in combination with collision caching (CC), path caching (PC), or saturatédgaeching (sPC). The latter
adds the presumption of a partially-filled cache at the start of testing.

Under all workloads a single level A* approach, as observed by umigthe grid level (GR), performs
much slower than static zoning or roadmap approaches. Caching impnesmed| time to closer to that
of static zoning, although response time remains objectively quite high—far nuates are searched for a
single-level path-finding approach. The GR approach usually rethenshortest paths. The improvement
in path quality (distance) over the other approaches is not large, hgvescethe difference between GR
and the best variation of SZ is quite marginal in all situations.

The Voronoi zoning scheme performed the slowest. This is perhapsylaige to the difference in terrain
conformance between the Voronoi and static zoning models: static zapestéuilding and other bound-
aries, while Voronoi zones largely ignore the structure of the underlyiag. A given Voronoi zone may
actually contain a maze of obstacles making navigation through it very expesrsperhaps even impos-

Figure 9: The interest map a) generated from the fourth run b) obtaliyethe average composition of all usable
runs c) processed average composition including intergistg) d) processed average composition with Delaunay
triangulation of interest points

Figure 10: Sample of the destination points used for performance.tests

10

Test Nodes/| Dist | Total | Speed| Delay

Search Time | units/ms| ms
Sz 240 |2088| 517.3s| 0.4 1469
SZ+CC 241 |2088| 221.3s| 0.94 628
SZ+CC+PC| 230 |2102| 212.2s| 0.99 602
SZ+CC 195 |2143| 150.2s| 1.42 | 424
+sPC
GR 2031 | 2076| 1585.7s 0.13 | 15857

GR+CC 2146 | 2053| 660.3s| 0.31 | 6603
GR+CC+PC 1979 | 2062| 618.3s| 0.33 | 6183
GR+CC 1753 | 2069| 482.4s| 0.42 | 4824

+sPC

RD 197 | 2114| 936.4s| 0.22 931
RD+CC 185 |2130| 489.2s| 0.43 486
VZ 332 |2317| 2195s 0.1 2469
VZ+CC 332 | 2317| 749.5s 0.3 843

VZ+CC+PC| 230 |2399| 559.3s| 0.42 | 591

Table 2: RANDOM: Benchmark data with random start and destination poirtis. [&ftmost column gives the experi-
mental environment. Other columns include average numbwsdes per search, total distance of computed paths in
game units, total time, distance searched per time unie(§pand average delay for a path calculation.

Test Nodes/| Dist | Total | Speed| Delay
Search Time | units/ms| ms
Sz 213 | 2057| 490.7s| 0.41 | 1268
SzZ+CC 213 |2058| 201.8s| 1.01 | 521
SZ+CC+PC| 173 |2074| 159.9s| 1.29 | 403
Sz+CC 138 |2114| 95.2s | 2.21 | 234
+sPC
GR 1758 | 2019|1338.95 0.15 |13389

GR+CC 1778 | 2018| 463.7s| 0.43 | 4637
GR+CC+PC 1262 |2041| 313.3s| 0.65 | 3133

GR+CC 963 |2060| 191.7s| 1.07 | 1917
+sPC

RD 108 |2162| 451.7s| 0.47 442
RC+CC 98 |2162| 215.2s 1 211
vZ 587 |2182| 3940.6s 0.05 | 4663
VZ+CC 587 |2181|1244.1 0.17 | 1472

VZ+CC+PC| 443 |2286| 978.4s| 0.23 | 1108

Table 3: MoODELED: Benchmark data with start and destination points seleicted Orbius data (outside points),
along with some random interior points.

11

Test Nodes/| Dist | Total | Speed| Delay

Search Time |units/ms| ms
[y 386 |2052| 966.8s| 0.21 | 2222
SZ+CC 503 |2051| 551.3s| 0.37 | 1388

SZ+CC+PC| 534 |2052| 595.9s| 0.34 | 1475
SZ+CC+ 273 | 2052| 203.9s 1 635
sPC
GR 1527 | 2050(1598.55 0.12 | 11841
GR+CC 1887 | 2062| 768.4s| 0.26 | 5528
GR+CC+PC| 1267 | 2053| 437.7s| 0.46 | 3647
GR+CC+ 932 |2063| 292.4s| 0.7 2249

sPC

RD 186 |2050| 1064.15 0.19 | 1019
RD+CC 196 |2065| 547.3s| 0.37 526
vz 599 |2052|3901.45 0.05 | 4763
VZ+CC 461 | 2053| 930.2s| 0.22 | 1177

VZ+CC+PC| 588 |2066|1298.5s 0.15 | 1603

Table 4: EXTRACTED: Data when paths are extracted from the Orbius movement data

sible. A greater emphasis on connectivity, including precalculation oiefficross-zone paths, as well as
use of aconstrainedvoronoi diagram, better respecting map obstacles would greatly improferpance.

The effects of the collision cache (CC) are visible in all three sets of arpats. We observe significant
speedups, with total time reducing by a factor of 1.8 to 4.2, depending onga@tyath-finding approach
used and workload applied. The specific magnitude of this reduction dassise strongly depend on
the cost of collision detection, but mirrors the expected density of collisiandifferent algorithms would
encounter. Roadmaps by nature avoid collisions due to being based ailyatravelled routes, and thus
benefit the least. Voronoi makes the most use of the CC; collisions are negrgefit, again due to the
relative lack of map conformance in the zones.

The benefits of the path cache (PC) are also noticeable, if less dradticcdehing reduces the number of
nodes expanded by A*, and this translates into a further 1.0 to 1.5 factoctien in total time. To get a
better appreciation of the path cache under long-term usage, wermpeda further experiment where the
cache was partially preloaded with values from random pathfinding gueieC). When there is existing
data to exploit performance is even more improved, a factor of 1.4 to 2.4ptaiarcollision caching.

Without path caching the roadmap extension to the hierarchical appragldk the best overall results, at
a potential small cost to path optimality as observed by the increase in totalodigtamelled. With path
caching static zoning shows significant further improvements under atll@aats, more so if the path cache
is primed or already partially-filled.

5.2 Workload Differences

The effect of different workloads can be seen in the three data Tablea general sense actual player
movements seem to be more complex and less predictable (ie less cacheaabiadth artificial data. The
node searches in thexERACTED data set are much larger than irddeLED or RANDOM, and this results
in larger total times as well. This can have a noticeable impact; in the caseTB#AETED path caching
overhead is sufficient to cause a reduction in performance when icegddaively in the SZ and VZ cases.
Once the cache is more filled cache hits more than balance out the overhead.

12

Performance of the caching and of the individual algorithms, excemtnddy is overall best on the bb-
ELED data. This reflects the nature of the generated workload. Only 30 sandcdestination points are
used for the paths based on th@MELED data, whereas ErRACTED paths are based on a much larger set
of player coordinates, andARIDOM paths are drawn from any map point. A smaller, more controlled and
well-balanced sample space has a better chance of permitting cache hitsachas, and the underlying
machine’s as well.

Interestingly, the impact of the hierarchy is greater aRoOM data, with progressively less relative impact
on the MODELED and EXTRACTED sets. This also mirrors the structure of the input data. Random data
points are well-distributed, and thus make good use of the hierarchy; S#&is3dimes faster than GR.
Orbius interest points are also reasonably well-spaced on the map, bytaneaoutside in the single large
outdoor zone, and the hierarchical gain is reduced to between 2.0 aml®@e¥ding on cache choices.
Extracted paths correspond to the actual game-play of Orbius, ane swiararily outside, reducing the
gain to between 1.4 and 1.7.

6 Conclusions & Future Work

Workload experiments show the difference in scale and variation an algonitily experience. Here, sur-
prisingly, while there are significant differences a randomized modebsoreably accurate, at least when
considering the relative performance of algorithms. For path-finding thklead choice is not a dominant
one, and algorithm design is much more important. Hierarchical implementatienmaunrprisingly best,
but only if reasonably well tailored to the underlying map, and with some dakp®e on the choice of
measurement workload.

We have attempted to incorporate genre or game-specific behaviour intostarttling the behaviour of
different path-finding approaches. There are many other game émdipding aspects worth considering.
Larger and different kinds of maps, different games, and so forthdvoe interesting to pursue. We are
interested in the effect of dynamic collisions, re-pathing and collision aac&lan path-finding efficiency.
Adapting algorithm usage to to high level changes in game strategy, gamseghaay also help improve
and further scale performance.

7 Acknowledgments

This research has been supported by the National Science and Emgjrieesearch Council of Canada. We
would like to thank Michael Hawker, Alexandre Denault, and the rest oMtammoth team for the help in
using and modifying Mammoth. Thanks also to all the volunteers who helped tinak2rbius experiment
a success!

References

[1] O. B. Bayazit, J.-M. Lien, and N. M. Amato. Roadmap-based flockargcbmplex environments. In
The Pacific Conference on Computer Graphics and App. (P&)es 104-113, Oct 2002.

[2] A. Botea, M. Muller, and J. Schaeffer. Near optimal hierarchichginding. Journal of Game
Developmentl:7-28, 2004.

13

[3] D. Z.Chen, R. J. Szczerba, and J. J. U. Jr. Planning conditshrmatest paths through an unknown en-
vironment: a framed-quadtree approachlBEE/RJS International Conference on Intelligent Robots
and Systems (IROS 9%plume 3, pages 33-38, Aug 1995.

[4] I. L. Davis. Warp speed: Path planning for star trek armadaAA#l 2000 Spring Symposium on
Interactive Entertainment and Apages 18—-21, March 2000.

[5] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for theibgtidetermination of minimum
cost pathslEEE Transactions on Systems Science and Cybernetics SS@adg2y 100-107, 1968.

[6] R.C. Holte, M. B. Perez, R. M. Zimmer, and A. J. MacDonald. Hienéral A*: Searching abstraction
hierarchies efficiently. Inrhe Thirteenth National Conference on Artificial Intelligence (AAAI-96)
pages 530-535, 1996.

[7] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H.Overmars. &litistic roadmaps for path planning
in high-dimensional configuration spacéBEE Transactions on Robotics & Automatjgrages 566—
580, June 1996.

[8] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robotEEE International
Conference on Robotics and Automatigalume 2, pages 500-505, 1985.

[9] R. Korf. Depth-first iterative deepening: An optimal admissible tresrc® InArtificial Intelligence
pages 97-109, 1985.

[10] D. Maio and S. Rizzi. A hybrid approach to path planning in autononagesits. InrSecond Interna-
tional Conference on Expert Systems for Developnpages 222-227, 1994.

[11] McGill University. Mammoth: The massively multiplayer prototypdat t p: // manmot h. cs.
nmcgi || . ca, Aug 2005.

[12] C. Niederberger, D. Radovic, and M. Gross. Generic path pignfor real-time applications. In
Computer Graphics International (CGI'04pages 299-306, 2004.

[13] A. Patel. Amit's thoughts on path-finding and A-stahttp://theory. stanford. edu/
~am t p/ GanmePr ogr anm ng/, 2003.

[14] D. C. Pottinger. Terrain analysis in realtime strategy game&£admputer Game Developers Confer-
ence 2000.

[15] C. Reynolds. Steering behaviors for autonomous characteSonmputer Game Developers Confer-
ence pages 763-782, 1999.

[16] N. Sturtevant and M. Buro. Partial pathfinding using map abstraatdirefinement. IThe Twentieth
National Conference on Atrtificial Intelligence and the Seventeenth Inivevapplications of Artificial
Intelligence Conferenc005.

[17] P. Yap. Grid-based path-finding. Wl '02: Proceedings of the 15th Conference of the Canadian
Society for Computational Studies of Intelligence on Advances in Artifidigllillence pages 44-55.
Springer-Verlag, 2002.

14

