
McGill University

School of Computer Science

Game Research at McGill

Path-finding for Large Scale Multiplayer Computer Games

GR@M Technical Report No. 2006-2

Marc Lanctot Nicolas Ng Man Sun Clark Verbrugge
School of Computer Science

McGill University, Montréal, Canada, H3A 2A7
marc.lanctot@mail.mcgill.ca nngman@cs.mcgill.ca clump@cs.mcgill.ca

July, 2006

g r a m . c s . m c g i l l . c a



1 Introduction

Current, state-of-the-art approaches to path-finding in computer gamesincorporate multiple, hierarchical
levels of searching and exploit a wide variety of searching heuristics. Our interest stems from a need to
find good path-finding performance in the context of a research-based (massively) multiplayer environment.
Large multiplayer games impose a general need to scale operations, whethercomputations are done on
multiplayer servers or intelligent clients that manage multiple game entities, and so consideration of how
well path-finding computations can be combined or reused is important. Other genre-specific properties
may also affect performance of the system. These include the relatively large distances travelled (less dense
points of interest), the presence of varying density of map obstacles, andthe frequent use of teams, and thus
the occasional use of strategized and collective movement. Understandingthe influence of genre-specific
properties of game workloads may also be important to efficient algorithm anddesign choices.

We investigate the performance of several path-finding implementation designs within theMammothmulti-
player game research infrastructure. Using a selection of workloads from random data to player movement
traces from a non-trivial multiplayer game we analyze the performance of different design and optimization
choices in path-finding implementation. Our data shows the impressive effectof hierarchical approaches,
particularly when underlying map data informs the hierarchy design, but also the great amount of opportu-
nity for cache-based optimizations that exploit repetition in game player actions. Workload choice affects
performance, but is generally overwhelmed by the algorithm performance.

Contributions of this work include:

• An experimental study of four path-finding approaches under different caching assumptions in a research
multiplayer game framework.

• Our data and experimentation is based on analysis of real player movement data from a non-trivial
multiplayer, team-based game.

• We provide an experimental comparison between three different forms ofpath-finding workload.

Below we present related work, followed by a description of our basic implementation environment and
movement models. We then present our test methodology, the kinds of data wegathered under what scenar-
ios. Discussion of the data is followed by conclusions and a description of further work.

2 Related Work

Path-finding in computer games is commonly approached as a graph search problem. The world is decom-
posed, abstracted as a graph model, and searched, typically using some variant of IDA* [9], based on the
well-known A* [5] algorithm. Underlying world decompositions can have a significant impact on perfor-
mance. Common approaches include those based on uniformly shaped grids, such as square or hexagonal
tilings [17], as well as the use of quadtrees [3, 4] or variable shaped tiles[12] for adaptivity to more arbitrary
terrain boundaries. Properties of the decomposition, its regularity, convexity, or Voronoi guarantees, as well
as geometric computations, such as visibility graphs, or even heuristic roadmap information [7] can then be
used to improve search efficiency.

Hierarchical path-finding incorporates multiple graph or search-spacedecompositions of different granular-
ity as a way of reducing search cost, perhaps with some loss of optimality. Hierarchical information has been
used to improve A* heuristics [6], and proposed in terms of using more abstract, meta-information already

1



Figure 1: A screenshot of the Mammoth client.

available in a map, such as doors, rooms, floors, departments [10]. Lessdomain-specific are graph reduction
techniques based on recursively combining nodes into clusters to form a hierarchical structure [16]. Our
approach here is most closely based on the HPA* multi-level hierarchical design, where node clustering
further considers the presence of collision-free paths between nodes[2].

Path-finding can also be based on the physics of dynamic character interaction. In strategies based on po-
tential fields [8] or more complex steering behaviours [15, 1] a character’s path is determined by its reaction
to its environment. This reactive approach can be combined with search-based models to improve heuristic
choices during searching [14]. There are many possible heuristics to exploit; in our implementations we use
a “diagonal distance” metric to approximate the cost of unknown movement [13].

3 Implementation Environment

3.1 Environment

The environment used for implementation was Mammoth [11]: a Java-based 2Doverhead-view multi-player
game and research framework. The main goal of the ongoing Mammoth project is to provide a common
platform to facilitate the implementation of research experiments. A screenshot isshown in Figure 1.

Mammoth allows human players to connect to and immerse themselves into a fairly large and intricate virtual
environment (the world). Within the Mammoth world players can explore the physical setting (the map) and
interact with world objects: static objects (walls, trees) and dynamic objects (items, other players). All
objects are represented as polygons. The world is partitioned into irregularly-shaped regions calledzones.
Physically, each zone corresponds to a collection of world objects. Virtually, each zone determines the
objects that clients must be aware of given the player’s current location;a typical zone in Mammoth would
be a room within a building. Zones are connected viatransition gates: physical entities which act as the
entry and exit points between zones.

The coordinate system used in the Mammoth map is(x, y) ∈ [0, 30]×[0, 30] ⊂ ℜ2; the origin(x, y) = (0, 0)
is graphically placed at the bottom-left of the space. Each world object hasa position: a pair of real values
(x andy), a zone ID, and astairlevelcorresponding to its distance in discrete levels relative to the ground
(stairlevel 0). Figure 2 gives a visualization of the map.

2



Figure 2: A wireframe view of the Mammoth map. The color of each rectangle indicates its type: white for a simple
texture/image, red for a static object, blue for a player, and green for an item.

3.2 Movement and Pathfinding

Player movement in Mammoth can be effected in one of two main fashions: a basicmovement scheme
where the player has fine-grained control, and a more complex system based on algorithmic path-finding.
The former allows for complete and highly-intentional control, and is the main method used for movement
in our initial game implementation. This basic movement model is performed by the player selecting a
destination point on the map through a mouse click. The player then moves in a straight-line path towards
their destination, stopping when they reach their destination or become blocked by an obstacle. Collision
detection is performed by checking if the player’s new position leads to an overlap between the player’s
shape and an obstacle’s shape. Maximal control is allowed by letting a player set a new destination at any
time along its currently-planned path, in which case the player immediately starts moving towards the new
destination instead.

The implementation of the path-finding algorithm is based on the classic A* algorithm [5]. Our design
operates on 2 levels, following the general ideas of a hierarchical path-finding system as outlined by Botea
et al. [2].

At the lower or “grid” level, the game world is effectively discretized into a small grid. This is performed
using the concept of a “ghost player.” The ghost player is a special entity maintained by Mammoth’s physics
engine: it abides by the same physical rules as any regular player except that it is invisible and only exists
temporarily. The A* algorithm searches the world by moving the ghost playeraround in discrete steps. This
method has a few advantages over a regular grid partitioning approach: 1) extra memory is only required
for the region that is currently being explored and not for the entire map, 2) dynamic map changes are easily
accommodated, and 3) the granularity of the steps with which the ghost playermoves can be adjusted to
accommodate the density of objects within a zone or to more closely mesh with the boundaries of non-axis-
aligned obstacles, as shown in Figure 3.

Since our map is set in a urban environment, the presence of rooms with doorways or staircases provides

3



Figure 3: Variable grid level

Z

Z

Z
Z

Z Z

Z

Z
ZZ

Z

Z

Z

Z1

2
3

4

5

6 7
8

9

10

11 12

13
14

P A

B

Figure 4: An example path calculation. Dotted curves represent grid-level paths.

a natural way to decompose the world at a higher level. We analyze the transition gates already present in
the Mammoth map and use that information to derive a connectivity graph whereeach node is a zone and
transition gates establish edges between them. This approach is particular well-suited for our work since our
lower grid-based level is never explicitly generated or kept for the entiremap, and thus cannot be the basis
for a higher level abstraction as is done in other hierarchical pathfindingapproaches.

Pathfinding at the zone-level occurs by first connecting the start position waypointsor transition gates to the
zone-level graph, searching the graph using the A* algorithm, and finallyconnecting the path to the final
destination point.

The following example is illustrated in Figure 4. Suppose playerP at positionA, in zoneZ1, wants to
travel to positionB, in zoneZ12. The zone-level path is found to be(Z1, Z6, Z11, Z12). Then, individual
grid-level paths are gradually resolved between the source, transition gates, and destination.

As an acceleration technique, once a player leaves a zone, that zone is marked as blocked and will not
be searched while refining the path to the next waypoint. This helps to further trim down the number of
unnecessary nodes that A* has to explore before finding a path.

In most games, and especially in a multiplayer environment, players tend to traverse paths that have been
previously traversed. Caching is thus expected to have a large impact on performance. We used 2 main

4



Figure 5: a) Exhaustive A* search without path cache b) Once cached, searching for a path between the same points
is much more focused.

types of data caching:

• Path caching at the grid level. Our approach works in the following way: for each point on a computed
path, we only store the next point on the way to the destination point. For example, to go from point P1
to P5, we only need to know at P1 that our next move should be P2, then at P2 move to P3, and so on. A
further improvement is done by abstracting every position at the grid-levelto a larger grid so that several
grid-level positions will actually map to the same cache node. The combination ofthese 2 techniques
can help to reduce memory requirement and at the same time increase cache hitratio compared to a more
brute-force approach of storing complete paths at each point. Figure 5 illustrates how the grid path cache
helps A* in practice.

• Collision caching. Every move made at the grid level requires checking forcollision. Querying the
Mammoth architecture for this is expensive. By caching this information for thestatic environment, we
expect to see a significant saving in time.

We used existing, pre-defined zones to build an abstract, high-level connectivity graph. This has the disad-
vantage that since the outside area in our map was mainly represented as onelarge zone only the lower-level,
grid-based pathfinding is used for a large part of the map. We have thus also investigated the use of a roadmap
planner based on actual player movement, as sampled from real gameplay inour environment. Roadmap
connectivity is built by performing visibility checks between the most commonly-occurring sample points.
The roadmap is attached to exit waypoints of all buildings, integrating with the existing hierarchial approach
and serving as a middle layer between the zone-level and grid-level. Figure 6 shows the hierarchy at work.

A final variation in hierarchy is to build a more balanced upper-level decomposition that has some relation
to expected player movement. Based on theinterest pointsgathered during the course of our workload
generation (see next Section) we thus construct a Voronoi diagram, and use the computed regions for our
“Voronoi zoning” scheme. Actual waypoints for these zones are computed from the midpoints of the edges
in the corresponding Delaunay triangulation, and are intended to represent locations where players may
enter/exit popular regions.

4 Methodology

We conducted several experiments under different movement model assumptions, and investigated the per-
formance as it varied due to different workloads. Three basic workloads are used during our simulations,

5



(a) (b)

Figure 6: An example path found in our simulations showing a) the zone-level path generated and b) the actual path
taken by the player

two of which are based on points automatically recorded from real player movements. In the first set,
interest points are chosen from a uniform distribution of map coordinates;this represents data easy to ac-
quire/generate, but quite artificial, and thus potentially inaccurate. The other two sets of interest points
are from actual gameplay:Operation: Orbiuswas organized to collect data from players during several
multi-player gaming sessions, and is discussed in detail below. One data set isfrom an abstract model of
Orbius game-play, where interest points are mainly defined from a relatively small list of the most travelled
locations over a series of games. The third set represents the actual paths of players in the game, constructed
from the Orbius game movements.

4.1 Measurements

We use several metrics to evaluate the quality of the different pathfinding techniques.

• total time taken: a quick measure of performance.

• total distance traveled: a measure of path optimality. The grid based approach should always return the
shortest path because it computes globally optimal solutions, while greater use of the hierarchy should
imply less optimal paths. It is interesting to compare the penalty in path optimality against the gain in
time.

• number of nodes explored: a measure of the efficiency of the algorithm. Fewer nodes usually implies
smaller total time and smaller memory usage as well. We expect collision caching to improve the total
time without actually changing number of nodes explored, while path caching should do the same but
by reducing the number of nodes explored. A more accurate heuristic should further reduce the number
of explored nodes; a high-level abstraction that accurately captures the topology of the map should help
make the low-level search more efficient.

• average delays before the player starts moving: measures how responsive the game is after the player
issues a pathfinding query. This can help evaluate player satisfaction.

6



Figure 7: A screenshot of two adversaries tickling each other, several orbs lying on the ground, and a red team’s base
duringOperation: Orbius

4.2 Orbius

Orbius is a Mammoth sub-game: a goal-oriented game played within the Mammoth world with other par-
ticipating players. Orbius is a team-based subgame in which players collude in attempt to win before every
other team. The game is designed to reflect the generally understood behaviour of larger-scale multiplayer
games: players are grouped (teams), map exploration is critical, both constrained (city, interior) and uncon-
strained (outdoor) movement areas are present, and different map locations have different levels of interest
to players.

In Orbius, players find and collect special items calledorbswhich are associated with teams using colours.
The team’s goal is to find theirglowing orband deposit it into an opponent team’sbasewhile still keeping
at least one base of their own intact. A base is formed when a team collects one of each size (five sizes in
total) of their team’s orbs and deposits them into a particular, arbitrarily selected container (the base), such
as a trash can, bookcase, etc.. Once a base container is chosen, the container starts to glow and a glowing
orb of the team’s colour is spawned at a random position on the map. Playerscan interact in two ways: by
tickling (once every ten seconds) and bybase dismantling(once every ten seconds). If a player attempts
to tickle another, there is a 50% chance that the ticklee will drop a random item she is carrying, otherwise
the tickler drops a random item. To dismantle an opponent team’s base, a player simply needs to remove
one of the five required orbs. Players can defend their bases by beingin the vicinity of their base or the
dismantler; for each defender there is a cumulative 15% chance that the dismantle attempt fails which leads
to the dismantler dropping a random item. Players cannot dismantle their own base because this would too
easily prevent opposing teams from achieving their goal. Finally, when a base is dismantled, the glowing
orb which was spawned from the base disappears. A screenshot of Orbius is presented in Figure 7.

Twenty-four (24) game players participated in theOperation: Orbiusevent. In total, 5 games sessions were
played, each having 6 teams of 4 players. Teams were not changed between games to encourage natural
strategy development between players. Two types of data were logged during the game-playing: a player’s
set destination action, and a player’s actual move update at each time step. For each action, the game server
logged the current time, the action type, the player ID, the player’s new position in the case of a move update
or the player’s current position and selected destination otherwise.

A snippet of the run logs is given in Figure 8.

7



1149808297073 MV 5053 18.197 27.362 0 15
1149808297099 MV 5053 18.189 27.332 0 15
1149808297127 MV 5053 18.182 27.303 0 15
1149808297155 MV 5053 18.176 27.274 0 15
1149808297182 SD 5052 18.5 27.8 0 15 18.267 26.688 0 15
1149808297183 SD 5052 18.5 27.8 0 15 18.267 26.688 0 15

Figure 8: Logged Data. Positions are denoted by four values in the following order:x y stairlevel zoneid.

4.3 Orbius-Based Data

Interest points chosen randomly on the Mammoth map may or may not correspond with map locations ac-
tually visited by real players. Actual game behaviour may in general bias movement, and thus performance.
To consider this bias in our workload we not only analyze random-generated path data, but also data derived
from a model of player movement, and data from a set of actual player paths.

Our movement model is intended to reflect common player movements, and so we determined which map
areas were most frequently traversed. The game space is discretized (as for grid-level pathfinding), and an
interest graderepresenting the total number of times that each grid cell was occupied during gameplay was
calculated. To further generalize the data interest maps are then passed through a series of transformations:
blurring, localization, andaverage composition. After each transformation, the interest grade values are
normalized.

• Blurring simultaneously sets each interest grade to the average of its immediate cell neighborhood,
including diagonal neighbours.

• Localization simultaneously sets each interest grade to itself plus the sum of “neighboring influences”.
Here, a “neighboring influence” is the interest grade of a nearby grid cell weighted inversely by the
distance between the two cells, up to a maximum considered distance.

• Averaging allows us to combine experimental data from different runs. For each grid cell in our final
output grid its interest grade is the average of the interest grades from the corresponding grid cells of
the original game runs.

The highest-valued interest points indicate the most often travelled areas, and form the basis of our modeling
workload (and our Voronoi zoning) approach. The top points are selected considering a minimum spread
distance between interest points; these then form the set of possible start/end path destinations during ran-
dom path generation.

Paths actually derived from the Orbius data are our most closely representative movement data. For this the
paths were derived in the following manner. For each player we find the mean (µ) and standard deviation (σ)
of the intervals between that player’s successive move updates. Intervals (∆t) which are sufficiently above
the expected value (∆t > T ) are considered “stop points”; two successive start/end position pairs represent
a path taken by the player. The threshold value is arbitraily chosen to beT = µ + kσ, with k = 1 in our
experiments. The connected update segments are then used to build our thirdworkload path data set.

8



Run ∆t (sec) MV SD
1 899 98619 10970
2 903 202563 32526
3 740 146142 34878
4 894 124613 54414
5 798 175435 60024

Average 849 149474 38562

Table 1: Summary of the collected movement data. Listed are the run number, elapsed time, number of movement
updates (MD), and the number of set destination actions (SD).

5 Experimental Analysis

To measure performance, we used a modified (isolated) version of the Mammoth stand-alone client. A
single player was setup and had to move to 100 destination points using different pathfinding algorithms and
under different cache parameters.

A summary of the data gathered fromOperation: Orbiusis given in Table 1. During the first and second
games, most players were still getting familiar with the game. Therefore to avoid biased results only runs
3-5 are used for analyses. Figure 9 shows several interest maps andthe derived interest points from some of
the movement data.

5.1 Path-finding Results

Three forms of path workload were considered. RANDOM: a basic workload derived from randomly chosen
start and end destinations, MODELED: a workload based on paths chosen from random Orbius points of
interest (shown in Figure 10), and EXTRACTED: a workload consisting of paths extracted from the individual
player movements in Orbius. These inputs provide a set of workloads intended to be progressive in accuracy,
and difficulty of acquisition. Cache sizes were set to 1Meg, and did not fillup in our tests—this data
represents the results of an ideal cache environment, with no collisions. Alltests were performed on an
8-way Xeon MP 2.7GHz, 8Gig of RAM, using Sun JDK-1.5.003 under Gentoo.

Tables 2, 3, and 4 show a breakdown of the test results for our three path-finding implementations based
on static zoning (SZ), no hierarchy (GR), use of roadmap (RD), and Voronoi zoning (VZ), either alone or
in combination with collision caching (CC), path caching (PC), or saturated path caching (sPC). The latter
adds the presumption of a partially-filled cache at the start of testing.

Under all workloads a single level A* approach, as observed by usingonly the grid level (GR), performs
much slower than static zoning or roadmap approaches. Caching improves overall time to closer to that
of static zoning, although response time remains objectively quite high—far more nodes are searched for a
single-level path-finding approach. The GR approach usually returnsthe shortest paths. The improvement
in path quality (distance) over the other approaches is not large, however, and the difference between GR
and the best variation of SZ is quite marginal in all situations.

The Voronoi zoning scheme performed the slowest. This is perhaps largely due to the difference in terrain
conformance between the Voronoi and static zoning models: static zones respect building and other bound-
aries, while Voronoi zones largely ignore the structure of the underlyingmap. A given Voronoi zone may
actually contain a maze of obstacles making navigation through it very expensive or perhaps even impos-

9



a) b)

c) d)

Figure 9: The interest map a) generated from the fourth run b) obtainedby the average composition of all usable
runs c) processed average composition including interest points, d) processed average composition with Delaunay
triangulation of interest points

Figure 10: Sample of the destination points used for performance tests.

10



Test Nodes/ Dist Total Speed Delay
Search Time units/ms ms

SZ 240 2088 517.3s 0.4 1469
SZ+CC 241 2088 221.3s 0.94 628
SZ+CC+PC 230 2102 212.2s 0.99 602
SZ+CC
+sPC

195 2143 150.2s 1.42 424

GR 2031 2076 1585.7s 0.13 15857
GR+CC 2146 2053 660.3s 0.31 6603
GR+CC+PC 1979 2062 618.3s 0.33 6183
GR+CC
+sPC

1753 2069 482.4s 0.42 4824

RD 197 2114 936.4s 0.22 931
RD+CC 185 2130 489.2s 0.43 486
VZ 332 2317 2195s 0.1 2469
VZ+CC 332 2317 749.5s 0.3 843
VZ+CC+PC 230 2399 559.3s 0.42 591

Table 2: RANDOM : Benchmark data with random start and destination points. The leftmost column gives the experi-
mental environment. Other columns include average number of nodes per search, total distance of computed paths in
game units, total time, distance searched per time unit (speed), and average delay for a path calculation.

Test Nodes/ Dist Total Speed Delay
Search Time units/ms ms

SZ 213 2057 490.7s 0.41 1268
SZ+CC 213 2058 201.8s 1.01 521
SZ+CC+PC 173 2074 159.9s 1.29 403
SZ+CC
+sPC

138 2114 95.2s 2.21 234

GR 1758 2019 1338.9s 0.15 13389
GR+CC 1778 2018 463.7s 0.43 4637
GR+CC+PC 1262 2041 313.3s 0.65 3133
GR+CC
+sPC

963 2060 191.7s 1.07 1917

RD 108 2162 451.7s 0.47 442
RC+CC 98 2162 215.2s 1 211
VZ 587 2182 3940.6s 0.05 4663
VZ+CC 587 2181 1244.1s 0.17 1472
VZ+CC+PC 443 2286 978.4s 0.23 1108

Table 3: MODELED: Benchmark data with start and destination points selectedfrom Orbius data (outside points),
along with some random interior points.

11



Test Nodes/ Dist Total Speed Delay
Search Time units/ms ms

SZ 386 2052 966.8s 0.21 2222
SZ+CC 503 2051 551.3s 0.37 1388
SZ+CC+PC 534 2052 595.9s 0.34 1475
SZ+CC+
sPC

273 2052 203.9s 1 635

GR 1527 2050 1598.5s 0.12 11841
GR+CC 1887 2062 768.4s 0.26 5528
GR+CC+PC 1267 2053 437.7s 0.46 3647
GR+CC+
sPC

932 2063 292.4s 0.7 2249

RD 186 2050 1064.1s 0.19 1019
RD+CC 196 2065 547.3s 0.37 526
VZ 599 2052 3901.4s 0.05 4763
VZ+CC 461 2053 930.2s 0.22 1177
VZ+CC+PC 588 2066 1298.5s 0.15 1603

Table 4: EXTRACTED: Data when paths are extracted from the Orbius movement data.

sible. A greater emphasis on connectivity, including precalculation of efficient cross-zone paths, as well as
use of aconstrainedVoronoi diagram, better respecting map obstacles would greatly improve performance.

The effects of the collision cache (CC) are visible in all three sets of experiments. We observe significant
speedups, with total time reducing by a factor of 1.8 to 4.2, depending on the type of path-finding approach
used and workload applied. The specific magnitude of this reduction does of course strongly depend on
the cost of collision detection, but mirrors the expected density of collisions the different algorithms would
encounter. Roadmaps by nature avoid collisions due to being based on actually travelled routes, and thus
benefit the least. Voronoi makes the most use of the CC; collisions are more frequent, again due to the
relative lack of map conformance in the zones.

The benefits of the path cache (PC) are also noticeable, if less drastic. Path caching reduces the number of
nodes expanded by A*, and this translates into a further 1.0 to 1.5 factor reduction in total time. To get a
better appreciation of the path cache under long-term usage, we performed a further experiment where the
cache was partially preloaded with values from random pathfinding queries (sPC). When there is existing
data to exploit performance is even more improved, a factor of 1.4 to 2.4 overplain collision caching.

Without path caching the roadmap extension to the hierarchical approach yields the best overall results, at
a potential small cost to path optimality as observed by the increase in total distance travelled. With path
caching static zoning shows significant further improvements under all workloads, more so if the path cache
is primed or already partially-filled.

5.2 Workload Differences

The effect of different workloads can be seen in the three data Tables. In a general sense actual player
movements seem to be more complex and less predictable (ie less cache-able) than more artificial data. The
node searches in the EXTRACTED data set are much larger than in MODELED or RANDOM, and this results
in larger total times as well. This can have a noticeable impact; in the case of EXTRACTED path caching
overhead is sufficient to cause a reduction in performance when introduced naively in the SZ and VZ cases.
Once the cache is more filled cache hits more than balance out the overhead.

12



Performance of the caching and of the individual algorithms, except Voronoi, is overall best on the MOD-
ELED data. This reflects the nature of the generated workload. Only 30 sourceand destination points are
used for the paths based on the MODELED data, whereas EXTRACTED paths are based on a much larger set
of player coordinates, and RANDOM paths are drawn from any map point. A smaller, more controlled and
well-balanced sample space has a better chance of permitting cache hits in ourcaches, and the underlying
machine’s as well.

Interestingly, the impact of the hierarchy is greater on RANDOM data, with progressively less relative impact
on the MODELED and EXTRACTED sets. This also mirrors the structure of the input data. Random data
points are well-distributed, and thus make good use of the hierarchy; SZ is over 3 times faster than GR.
Orbius interest points are also reasonably well-spaced on the map, but many are outside in the single large
outdoor zone, and the hierarchical gain is reduced to between 2.0 and 2.7depending on cache choices.
Extracted paths correspond to the actual game-play of Orbius, and so are primarily outside, reducing the
gain to between 1.4 and 1.7.

6 Conclusions & Future Work

Workload experiments show the difference in scale and variation an algorithm may experience. Here, sur-
prisingly, while there are significant differences a randomized model is reasonably accurate, at least when
considering the relative performance of algorithms. For path-finding the workload choice is not a dominant
one, and algorithm design is much more important. Hierarchical implementations are unsurprisingly best,
but only if reasonably well tailored to the underlying map, and with some dependence on the choice of
measurement workload.

We have attempted to incorporate genre or game-specific behaviour into understanding the behaviour of
different path-finding approaches. There are many other game and path-finding aspects worth considering.
Larger and different kinds of maps, different games, and so forth would be interesting to pursue. We are
interested in the effect of dynamic collisions, re-pathing and collision avoidance on path-finding efficiency.
Adapting algorithm usage to to high level changes in game strategy, game “phases,” may also help improve
and further scale performance.

7 Acknowledgments

This research has been supported by the National Science and Engineering Research Council of Canada. We
would like to thank Michael Hawker, Alexandre Denault, and the rest of theMammoth team for the help in
using and modifying Mammoth. Thanks also to all the volunteers who helped makethe Orbius experiment
a success!

References

[1] O. B. Bayazit, J.-M. Lien, and N. M. Amato. Roadmap-based flocking for complex environments. In
The Pacific Conference on Computer Graphics and App. (PG), pages 104–113, Oct 2002.

[2] A. Botea, M. Muller, and J. Schaeffer. Near optimal hierarchical path-finding. Journal of Game
Development, 1:7–28, 2004.

13



[3] D. Z. Chen, R. J. Szczerba, and J. J. U. Jr. Planning conditionalshortest paths through an unknown en-
vironment: a framed-quadtree approach. InIEEE/RJS International Conference on Intelligent Robots
and Systems (IROS 95), volume 3, pages 33–38, Aug 1995.

[4] I. L. Davis. Warp speed: Path planning for star trek armada. InAAAI 2000 Spring Symposium on
Interactive Entertainment and AI, pages 18–21, March 2000.

[5] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination of minimum
cost paths.IEEE Transactions on Systems Science and Cybernetics SSC4 (2), pages 100–107, 1968.

[6] R. C. Holte, M. B. Perez, R. M. Zimmer, and A. J. MacDonald. Hierarchical A*: Searching abstraction
hierarchies efficiently. InThe Thirteenth National Conference on Artificial Intelligence (AAAI-96),
pages 530–535, 1996.

[7] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H.Overmars. Probabilistic roadmaps for path planning
in high-dimensional configuration spaces.IEEE Transactions on Robotics & Automation, pages 566–
580, June 1996.

[8] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. In IEEE International
Conference on Robotics and Automation, volume 2, pages 500–505, 1985.

[9] R. Korf. Depth-first iterative deepening: An optimal admissible tree search. InArtificial Intelligence,
pages 97–109, 1985.

[10] D. Maio and S. Rizzi. A hybrid approach to path planning in autonomousagents. InSecond Interna-
tional Conference on Expert Systems for Development, pages 222–227, 1994.

[11] McGill University. Mammoth: The massively multiplayer prototype.http://mammoth.cs.
mcgill.ca, Aug 2005.

[12] C. Niederberger, D. Radovic, and M. Gross. Generic path planning for real-time applications. In
Computer Graphics International (CGI’04), pages 299–306, 2004.

[13] A. Patel. Amit’s thoughts on path-finding and A-star.http://theory.stanford.edu/
∼amitp/GameProgramming/, 2003.

[14] D. C. Pottinger. Terrain analysis in realtime strategy games. InComputer Game Developers Confer-
ence, 2000.

[15] C. Reynolds. Steering behaviors for autonomous characters. InComputer Game Developers Confer-
ence, pages 763–782, 1999.

[16] N. Sturtevant and M. Buro. Partial pathfinding using map abstractionand refinement. InThe Twentieth
National Conference on Artificial Intelligence and the Seventeenth Innovative Applications of Artificial
Intelligence Conference, 2005.

[17] P. Yap. Grid-based path-finding. InAI ’02: Proceedings of the 15th Conference of the Canadian
Society for Computational Studies of Intelligence on Advances in Artificial Intelligence, pages 44–55.
Springer-Verlag, 2002.

14


