
Postina: A Publish/Subscribe Middleware

Designed for Massively Multiplayer Games

Master Thesis 2007-2008

http://postina.zindel.org

Supervisors: Jörg Kienzle, Alexandre Denault and Ulrich Ultes-Nitsche

Dominik Zindel
dominik [at] zindel.org

School of Computer Science
McGill University, Montréal, Québec

and

Department of Informatics
University of Fribourg, Switzerland

February 22, 2008

http://postina.zindel.org

Abstract

Postina is a network middleware designed for massively multiplayer online games
(MMOG). It combines publish/subscribe functionalities with direct messaging,
a feature of critical importance for MMOGs.

In MMOGs, numerous messages such as state updates are sent to different
clients. While some messages must be multicast to a large group of clients, other
messages are private and sent to a single client only. Using a traditional client-
server approach limits the number of simultaneous players, a property that is
undesired in MMOGs. A potential solution would be to use publish/subscribe
systems which are designed for scalability. Pure publish/subscribe systems,
however, do not provide any possibility to send a message directly to a single
client as the peers do not have any knowledge of the network topology.

In this thesis we first study different publish/subscribe systems and the fea-
tures they offer to choose an appropriate middleware providing the required
functionalities for MMOGs. Additionally, we design Postina, an API for network
layers in MMOGs that offers a convenient interface combining publish/subscribe
and direct messaging. We then implement a version of Postina using Scribe, a
topic-based publish/subscribe system built on top of the distributed hashtable
Pastry. To fulfil the requirements of MMOGs, we add extra features such as
reliable direct messaging and the capability of issuing subscriptions for other
clients. This version of Postina is then integrated into Mammoth, the massively
multiplayer game research framework developed at McGill University. Finally,
the efficiency of the new network layer is tested to determine the maximum
number of simultaneous players.

This thesis was written at McGill University (Montréal, Québec) under
the supervision of Professor Jörg Kienzle and Alexandre Denault (PhD can-
didate) as part of the fulfilment of the requirements of the Master of Science in
Computer Science at the University of Fribourg (Switzerland). The thesis was
co-supervised by Professor Ulrich Ultes-Nitsche at the University of Fribourg
(Switzerland).

i

Abrégé

Postina est un intergiciel (“middleware”) pour la communication de réseau dans
des jeux en ligne massivement multijoueur (MMOG) qui combine les avantages
des systèmes publish/subscribe (“publier et s’abonner”) avec la possibilité d’en-
voyer un message directement à un client spécifié, une fonctionnalité d’impor-
tance primordiale pour les MMOGs.

Dans des MMOGs, de nombreux messages de mises à jour sont expédiés à
plusieurs participants. Tandis que certains de ces messages sont envoyés à un
groupe de clients, d’autres ciblent un seul participant. L’utilisation d’une archi-
tecture client/serveur traditionnelle n’est pas appropriée car elle limite le nombre
de joueurs qui peut être connecté simultanément, une caractéristique indésirable
pour des MMOGs. Cependant, un système publish/subscribe permettrait, par
sa conception, d’atteindre un degré maximal d’extensibilité. Malheureusement,
les différents clients dans un système publish/subscribe ne connaissent pas tous
les autres participants du système. Comme conséquence, l’envoi direct d’un
message d’un particulier à un seul client n’est pas possible avec un système
publish/subscribe dans sa forme pure.

Dans ce rapport nous étudions d’abord plusieurs systèmes de pu-
blish/subscribe existants et leurs fonctionnalités. Cette étude est suivie par le
choix d’un intergiciel approprié qui met à disposition les fonctionnalités requises
par des MMOGs. Ensuite nous développons Postina, qui combine les fonctionna-
lités des systèmes publish/subscribe avec l’envoi direct d’un message destiné à un
seul client. Postina fournit donc une interface de programmation (API) conve-
nable pour la couche réseau dans des MMOGs. En outre, nous implémentons
une version de Postina en utilisant Scribe, un système publish/subscribe qui uti-
lise des sujets (“topic-based”) et qui se base sur la table de hachage distribuée
Pastry. Afin de satisfaire les besoins des MMOGs nous y ajoutons certaines
fonctionnalités comme le transfert fiable de messages et la possibilité d’abonner
un autre client à un sujet. Cette implantation concrète de Postina est ensuite
intégrée dans Mammoth, le cadre d’applications développé à l’université de Mc-
Gill pour la recherche dans des jeux massivement multijoueur. Cette applica-
tion concrète permet de tester le nouveau intergiciel et de déterminer le nombre
maximal de clients pouvant se connecter simultanément.

Cette thèse a été écrite à l’université McGill (Montréal, Québec) sous la su-
pervision du Professeur Jörg Kienzle et du doctorant Alexandre Denault en vue
de l’obtention du Master of Science en Informatique à l’Université de Fribourg
(Suisse). La thèse a été co-supervisée par le Professeur Ulrich Ultes-Nitsche de
l’Université de Fribourg (Suisse).

ii

Zusammenfassung

Postina ist eine Middleware für die Netzwerkkommunikation in Massen-
Mehrspieler-Online-Gemeinschaftsspielen (MMOG). Es verbindet die Möglich-
keiten von Publish/Subscribe-Systemen (“veröffentlichen und abonnieren”) mit
der für MMOGs äusserst wichtigen direkten Zustellung von Meldungen an einen
bestimmten Client (“Kunden”) im Netzwerk.

In MMOGs muss eine grosse Menge von Meldungen an eine Vielzahl von Cli-
ents geschickt werden um deren Status zu aktualisieren. Während ein Teil der
Nachrichten mittels Mehrpunktverbindungen an eine grosse Gruppe von Clients
geschickt werden muss (Multicast), sind andere Meldungen privat und müssen
nur einem einzigen, bestimmten Client zugestellt werden. Während ein tradi-
tionelles Client-Server-Modell einfach umzusetzen ist, schränkt es die mögliche
Anzahl der gleichzeitig aktiven Spieler stark ein, da alle Benachrichtigungen
des MMOG über den zentralen Server laufen. Diese Eigenschaft limitiert den
Nutzen des zentralisierten Client-Server-Modells für Benachrichtigungsdienste
in MMOGs. Demgegenüber ist ein Publish/Subscribe-System zwar gut skalier-
bar; da die einzelnen Teilnehmer im Rechnernetz keine Informationen über die
anderen Clients besitzen, haben reine Publish/Subscribe-Systeme jedoch den
Nachteil, dass der Versand privater Meldungen direkt an einen bestimmten Teil-
nehmer nicht möglich ist.

In dieser Arbeit untersuchen wir zuerst verschiedene Publish/Subscribe-
Systeme und ihre Funktionalitäten um anschliessend eine passende Middle-
ware auszuwählen. Diese muss die Anforderungen von MMOGs erfüllen.
Im Anschluss an diese Untersuchung entwickeln wir Postina, eine Program-
mierschnittstelle (API) für Netzwerkschichten in MMOGs. Postina stellt ei-
ne komfortable Schnittstelle zur Verfügung, die die Nutzung sowohl von
Publish/Subscribe-Funktionalitäten als auch von direktem Mitteilungsversand
ermöglicht. Zusätzlich implementieren wir eine Version von Postina mit Hilfe
von Scribe, einem themenbasierten (“topic-based”) Publish/Subscribe-System,
das auf der verteilten Hashtabelle Pastry basiert. Um die Anforderungen von
MMOGs erfüllen zu können, fügen wir weitere Fähigkeiten hinzu. Dazu gehören
der zuverlässige direkte Mitteilungsversand sowie die Möglichkeit, andere Clients
als Abonnenten eines Themas hinzuzufügen. Diese Version von Postina binden
wir anschliessend in Mammoth, dem an der McGill-Universität für die Forschung
an Massen-Mehrspieler-Gemeinschaftsspielen entwickelten Framework, ein, um
danach die Leistungsfähigkeit der neuen Netzwerkschicht zu testen und so die
maximale Anzahl gleichzeitig verbundener Spieler in Mammoth herauszufinden.

Diese Masterarbeit wurde an der McGill-Universität in Montréal (Québec)
unter der Betreuung von Professor Jörg Kienzle und dem Doktoranden Alex-
andre Denault im Rahmen des Studienprogrammes zur Erlangung des Master of
Science in Informatik an der Universität Fribourg (Schweiz) erstellt. Die Arbeit
wurde von Professor Ulrich Ultes-Nitsche an der Universität Fribourg (Schweiz)
mitbetreut.

iii

Acknowledgement

First, I would like to thank Prof. Jörg Kienzle, my supervisor at McGill, and
Prof. Ulrich Ultes-Nitsche at University of Fribourg for enabling me to do my
Master thesis as a visiting research student. Their support was invaluable during
the realisation of my project. Additionally, I would like to thank Alexandre
Denault at McGill University for his support, feedback, time, and ideas.

I would also like to thank Alex Cheung at University of Toronto for the
help during the evaluation of Padres and Jeff Hoye at Max Planck Institute for
Software Systems for providing assistance during the implementation of Postina
with Pastry/Scribe. I am also grateful to Samuel Gélineau at McGill University
for the fruitful discussions of theoretical issues. I would also like to thank Renzo
Caduff and Christian Markus Eichenberger, both at University of Fribourg, for
their help during the process of finding an euphonic product name for this
project. Additionally, I am very grateful to my aunt Judith Gantenbein-Schenk
who has proofread this thesis.

Last but not least I would like to thank my parents for their support during
my studies in Fribourg and Montréal.

iv

Contents

1 Introduction 2
1.1 Motivation . 2
1.2 Task of Thesis . 2
1.3 Used Software, Environment . 3
1.4 Schedule . 3

2 Evaluation of Middlewares 4
2.1 Publish/Subscribe . 4

2.1.1 Application Area . 4
2.1.2 Actors . 5
2.1.3 Overview . 5
2.1.4 Selection Mechanisms . 5
2.1.5 Routing . 7

2.2 Sub-2-Sub . 8
2.2.1 System Description . 8
2.2.2 Spread Publications, Routing 9
2.2.3 Expected Network Traffic 9
2.2.4 Evaluation . 10

2.3 PADRES . 10
2.3.1 System Description . 10
2.3.2 Special Features . 12
2.3.3 Evaluation . 13

2.4 Pastry . 14
2.4.1 System Description . 14
2.4.2 Performance . 16
2.4.3 Evaluation . 17

2.5 SCRIBE . 17
2.5.1 System Description . 18
2.5.2 Evaluation . 20

2.6 Evaluation Summary . 21

v

3 Requirements of MMOGs and Solutions 23
3.1 Mammoth . 23
3.2 Requirements . 25

3.2.1 Scalability . 25
3.2.2 Message importance/subscription quality 25
3.2.3 Direct Messaging . 26
3.2.4 Interface . 26
3.2.5 Arrival of Clients . 27

3.3 Problems & Solutions with PADRES and SCRIBE 27
3.3.1 Communication Duplica ↔ Master 27
3.3.2 Information about Moving Players 29
3.3.3 Send Serialized Data . 29
3.3.4 Arrival of Clients . 30
3.3.5 Possible Improvements/Extensions 30

3.4 Comparison . 31
3.5 Final Decision about Middleware 33

4 Postina 34
4.1 Description . 34

4.1.1 Purpose . 34
4.1.2 Naming . 35
4.1.3 Features . 35
4.1.4 Special Features . 35

4.2 API . 36
4.2.1 PostinaNetworkLayer . 37
4.2.2 PostinaTopic . 39
4.2.3 PostinaMsgListener . 39
4.2.4 PostinaClientListener . 39
4.2.5 PostinaMessage . 39
4.2.6 Exceptions . 40

4.3 Implementation With Pastry/Scribe 41
4.3.1 Main Application . 41
4.3.2 Messaging . 44
4.3.3 Subscriptions . 44
4.3.4 Identification . 44
4.3.5 Remote Calls . 44
4.3.6 Reliability . 45
4.3.7 Detection of Dead Clients 46
4.3.8 Broadcasting . 46

4.4 User Guide . 46
4.4.1 How To Use The Provided Version 46
4.4.2 License . 47
4.4.3 Multiple Network Interfaces 47
4.4.4 Properties . 49
4.4.5 Upgrade Pastry/Scribe . 50
4.4.6 How To Replace Pastry/Scribe 50

vi

4.4.7 Logging . 51
4.4.8 Trouble Shooting . 51

4.5 Unit Testing . 51

5 Application of New Network Middleware 52
5.1 Preparatory Work . 52
5.2 User Guide . 53

5.2.1 Interfaces Of The Network Engine 53
5.2.2 How To Integrate Another Middleware 54
5.2.3 How To Select The Middleware To Be Used 54

5.3 Integration of Postina Into Mammoth 54
5.3.1 Client vs. Server . 54
5.3.2 Request Message . 55

5.4 Experimental Results . 55
5.4.1 Profiling . 55
5.4.2 Improvements . 55
5.4.3 Testing with Non-Player Characters 56
5.4.4 Capacity . 56

6 Limitations of Postina with Pastry/Scribe 59
6.1 Peer-to-Peer . 59

6.1.1 Problem Description . 59
6.1.2 Possible Solutions . 60
6.1.3 Conclusion . 61

6.2 Reliability . 62
6.2.1 Reasons for Loss of Messages 62
6.2.2 Limitations of Reliability 62

6.3 Dead Peers . 63
6.4 Security . 63
6.5 Scalability . 63

7 Evaluation 65
7.1 Summary . 65
7.2 Outlook . 66
7.3 Conclusion . 66

References 67

vii

List of Figures

3.1 The current 2D view in Mammoth. 24
3.2 The beta version of the 3D view of Mammoth. 24

4.1 The Interface PostinaNetworkLayer. 37
4.2 The UML diagram representing the structure of Postina, part 1. 42
4.3 The UML diagram representing the structure of Postina, part 2. 43
4.4 Remote calls with Postina. 44
4.5 Reliability: Behaviour with usual data flow. 45
4.6 Reliability: Behaviour with lost message. 45
4.7 Reliability: Behaviour with lost acknowledgement. 46
4.8 The topology of the game research servers. 48
4.9 The key interfaces of Postina. 50

5.1 Statistical Comparison of Postina (b = 4) with Client-Server. . . 57

viii

List of Tables

3.1 Comparison of Padres and Scribe regarding Mammoth’s needs. . 32

1

Chapter 1

Introduction

1.1 Motivation

Massively Multiplayer Online Games (MMOG) are becoming increasingly pop-
ular. In these games, many players are playing simultaneously. As competing
players need to have the same knowledge about the current game state, a lot
of data has to be transmitted over the network, usually the Internet. Handling
the massive amount of data caused by thousands of players is very challenging
and achieving scalability still is a challenge for developers of MMOGs.

Mammoth is a massively multiplayer game research framework. The current
networklayer uses the client-server paradigm and opens a TCP connection to
each client. If a message is sent to n clients, the server sends n messages. This
limits the number of active clients. However, the goal of the Mammoth team
is to support several thousand simultaneously connected players, which is not
possible with a simple client-server paradigm.

With the current client-server architecture in Mammoth it is very challenging
to distribute the load on several servers due to the lack of flexibility. For a
distributed infrastructure, the network layer should also be based on a peer-to-
peer system.

The currently existing infrastructure for communication in Mammoth has
worked well until now. However, it cannot cope with the new requirements of
Mammoth. Therefore, an alternative, more powerful network layer is needed.

1.2 Task of Thesis

The task of this master thesis is to evaluate different solutions for the network
layer of MMOGs to choose the most powerful one and to define a convenient
API for MMOGs. This new API will then be implemented and integrated into
Mammoth as a proof of concept.

A special focus is directed to publish/subscribe systems as scalability is
their strength. This is especially the case when a messages has to be multicast,

2

CHAPTER 1. INTRODUCTION 3

that is sent to an entire group of clients interested in this message (but not to
all clients in the network) which is often necessary in multiplayer games. In
addition to multicasting, direct messaging is necessary for MMOGs. Several
publish/subscribe systems are evaluated and finally one is chosen and applied.

The aim of this report is to documentate the completed thesis and the deci-
sions taken as well as to provide a sufficient amount of information to developers
to use Postina. After this introductory chapter, an overview of possible alterna-
tive solutions with a special focus on publish/subscribe systems follows. Third,
the demands on the network layer for a MMOG are defined. Particular attention
is given to the Mammoth project. Fourth, Postina, the new API providing both
direct messaging and publish/subscribe, is introduced and implemented using
an existing publish/subscribe system. Fifth, a proof of concept is given by inte-
grating Postina into Mammoth, also explaining how to use it within Mammoth.
Despite all efforts, the implemented version of Postina is not a perfect framework
and thus its limitations are discussed in Chapter 6. To conclude, a summary is
given, which is followed by an outlook mentioning possible improvements and a
conclusion.

1.3 Used Software, Environment

The entire project has been developed in Java 1.5 using the IDE Eclipse 3.3

on a computer with Gentoo Linux and Ubuntu Linux. The UML diagrams
were drawn using Dia 0.96.1, profiling was done using JProfiler 5.1.

1.4 Schedule

Research and implementation for this master thesis were done from Septem-
ber 2007 to February 2008 at the Software Engineering Lab at the School of
Computer Science at McGill University, Montreal. The first month was dedi-
cated to the evaluation of alternatives. After, Pastry/Scribe were tested in some
more details before the actual design and implementation work of Postina was
done. Next, Postina was integrated into Mammoth, followed by intense testing
and evaluation of the new solution.

Chapter 2

Evaluation of Potential
Middleware Systems

The aim of this chapter is to first give an introduction to publish/subscribe
systems in general but with a special focus on the requirements of MMOGs
(see Chapter 3 on page 23). Second, Sub-2-Sub, an autonomous self-organizing
peer-to-peer content-based publish/subscribe system, is introduced. Third, the
content-based publish/subscribe middleware PADRES, developed at the Uni-
versity of Toronto, is explained. Fourth, Pastry, an overlay and routing network
for the implementation of a distributed hash table, is presented. Fifth, SCRIBE,
a topic-based publish/subscribe system based on Pastry is introduced. Last, a
short comparison of the four systems is given and two of them are selected for
a closer evaluation with regard to the requirements of Mammoth.

2.1 Publish/Subscribe

This section shall give a short and general introduction to publish/subscribe
systems.

2.1.1 Application Area

A publish/subscribe system can be applied when a large number of subscribers
with diverse interests has to be notified about an event or a publication. The
decoupling of clients allows for a maximum degree of flexibility and scalability.
In general, publish/subscribe systems can be used when asynchronous commu-
nication is necessary.

The scalability in publish/subscribe systems relies on the fact that clients
do not need global knowledge of the network. Publishers do not know the
consumers, and vice versa. Thus, as a disadvantage, direct messaging between
different clients is usually impossible in publish/subscribe systems.

4

CHAPTER 2. EVALUATION OF MIDDLEWARES 5

2.1.2 Actors

With publish/subscribe systems, three types of actors are important:

Publishers or producers submit data as publications or notifications.

Subscribers or consumers subscribe to publications, submit subscriptions.

Brokers or event services are neutral mediators between publishers and sub-
scribers. Brokers are not used in all publish/subscribe systems. How-
ever, the lack of brokers breaks the separation between publishers and
subscribers and thus limits the scalability. Therefore, all larger pub-
lish/subscribe systems use a form of brokers.

Publishers and subscribers are both clients. A client can be both a publisher
and a subscriber at the same time.

2.1.3 Overview

In a publish/subscribe system, the clients asynchronously exchange notifica-
tions, the publisher does not wait for an answer from the subscriber. As they
even do not know of each others’ existence, there is no direct point-to-point
communication between two actors but all interaction is mediated by a set of
brokers or propagators. When receiving a publication, these brokers determine
the set of matching subscriptions and forward it to the subscribers.

2.1.4 Selection Mechanisms

In publish/subscribe systems there exist five different main notification selection
mechanisms (see [16] and [13]). The selection mechanism is of prime impor-
tance for a publish/subscribe system. In case of insufficient filters unnecessarily
broad subscriptions may saturate the network and require additional filtering
on the client-side. The following notification selection mechanisms shall be
explained briefly: channel-based, subject-based, topic-based, type-based and
content-based selection.

Channel-based Selection

Channel-based selection is the oldest and simplest way to select the messages
of interest. A set of channels to which consumers can subscribe is defined.
Publications are then published with respect to a certain channel and will be
forwarded to all subscribers to the chosen channel.

With channel-based selection, the expressiveness is limited. Publications can
only be classified with respect to the defined channels. Additionally, channels
are very inflexible. If the set of channels is modified, all clients (subscribers and
publishers) may have to be modified.

CHAPTER 2. EVALUATION OF MIDDLEWARES 6

Subject-based Selection

With subject-based selection, publications are released with respect to a certain
subject where a subject usually is a dot separated string. This dot separated
string (e.g. market.quotes.NASDAQ) represents a subject tree.

Due to the tree structure, subject-based selection has a limited expressive-
ness as additional criteria cannot be defined easily. In addition, subject division
is possible in only one dimension. The use of several dimensions makes the
subject tree explode due to the repetition of parts of it. Like channel-based
selection, subject-based selection is inflexible in case of changes.

Topic-based Selection

When using topic-based selection, topics are identified by keywords (e.g. stock
quote). Every topic is seen as an event service of its own to which consumers
can subscribe. Topic-based systems are similar to group communication and
event-notification systems.

Topic-based selection does have the disadvantage that it is rather static
and that platform interoperability has to be enforced by limiting the keys to
strings. Additionally its expressiveness is limited as a subscriber may have to
subscribe to a topic although it is only interested in parts of this topic. This
leads to unnecessary publication messages and therefore possibly inefficient use
of bandwith.

The advantage of topic-based selection over channel-based selection is the
better separation of publishers and consumers and the higher degree of flexibil-
ity.

Type-based Selection

Unlike the other approaches, the type-based selection mechanism checks com-
monalities not only in the content but also in the structure. Filtering is done
according to the type and not according to the name. This can lead to a more
natural representation of filtering. In object-oriented languages, type-based se-
lection is implemented using heritage.

Content-based Selection

Content-based selection is the most powerful and most flexible notification se-
lection mechanism as events are classified according to their properties and not
according to some predefined external criterion. This also allows for a finer
granularity. With content-based selection, full decoupling of producers and
consumers is possible:

Space decoupling The interacting parties do not need to know each other.
Publishers do not hold references to subscribers, they even do not know
how many subscribers are consuming their messages. Similarly, sub-
scribers do not hold any reference to the publisher.

CHAPTER 2. EVALUATION OF MIDDLEWARES 7

Time decoupling Publishers and subscribers do not have to be actively par-
ticipating at the same time.

Synchronization decoupling The communication is asynchronous, clients
are not blocked during the communication.

While content-based selection is the most powerful notification selection
mechanism it is also the most complex one to implement.

2.1.5 Routing

In a publish/subscribe system, an efficient way to route messages from the pro-
ducer to the consumers is necessary. A centralized notification service is unde-
sirable for performance reasons. Instead, the functionality should be distributed
over a set of cooperating event brokers [16] with each broker managing an exclu-
sive subset of clients and propagating the messages. Therefore, messages have
to be sent to these brokers and finally to the clients.

Messages could be flooded to all actors in the system but flooding leads to
many unnecessary messages. Using the standard IP, routing is based on the
destination address. This requires knowledge about the target and prohibits
complete decoupling. As an alternative, content-based routing can be used.

When using content-based routing, messages are not routed with respect to
their destination address but based on the actual content of the message. The
content-based address of a subscriber is formed by the set of subscriptions it
has issued. There exist three different versions of content-based routing (confer
to [16]) which we shall now look at.

Simple Routing

Simple routing is the most basic content-based routing algorithm. All brokers
have to know about all active subscriptions and each broker has an entry in its
routing table for each active subscription. To achieve this, all new and cancelled
subscriptions have to be broadcasted to all brokers.

Simple routing is not suitable for larger networks as numerous messages are
sent unnecessarily.

Covering-based Routing

Covering-based routing is an improvement of the simple routing. Subscriptions
are only forwarded selectively. A subscription that is already covered by a pre-
vious subscription is not forwarded anymore. A subscription F1 covers another
subscription F2 iff N(F2) ⊆ N(F1) where N(F) is the set of matching notifica-
tions [15]. The covering is called perfect if equality holds, else it is imperfect.

Routing Using Advertisements And Subscriptions

Advertisements are filters that are issued by publishers to inform about their
intention to publish notifications matched by the issued advertisement. All

CHAPTER 2. EVALUATION OF MIDDLEWARES 8

publications must be matched by a previously issued advertisement, that is
the publication must have the same or fewer attributes than the advertisement.
Additionally, the values for each attribute must be covered by the advertisement.

A subscription is a filter issued by the consumer to indicate interest to receive
future publications. The notification set is the set of potential publications that
would match the subscription.

The advertisements form an advertisement tree which is then used to route
subscriptions. A subscription is only forwarded if it overlaps with an active
advertisement. Similarly, the subscriptions form a subscription tree and a pub-
lication is only forwarded if it overlaps with an active subscription.

Using advertisements and subscriptions ensures that subscriptions and pub-
lications are not unnecessarily routed to brokers. This approach reduces the
number of messages sent provided that advertisements are the least common
message. If the number of publications is rather small in comparison to the
number of advertisements and subscriptions, this approach is inefficient in terms
of the number of messages.

2.2 Sub-2-Sub

Sub-2-Sub is an autonomous self-organizing peer-to-peer content-based pub-
lish/subscribe system that deploys an unstructured overlay network [20]. Sub-
2-Sub supports value-based and interval-based subscriptions.

The dissemination of events to the subscribers is done by the cooperation of
interested nodes themselves (autonomously), no relay servers or brokers are nec-
essary. Nodes organize themselves in a structure in a completely decentralized
manner (self-organizing).

2.2.1 System Description

Sub-2-Sub uses an epidemic algorithm to cluster subscribers. Each peer knows
about some other peers. The peers it knows about comprise its view. This
view is periodically updated with another peer. This updating is based on a
proximity metric in the attribute space. Clustering of the subscribers is done
according to the similarity in the subscriptions.

Subscribers use attribute values to define their interest. All attribute values
have to be real numbers. The attribute values can either be discrete values
(e.g. A1 = 5.25) or ranges (e.g. A2 ∈ [3.18, 6.89]). If multiple exact values
or multiple non-continuous subranges (of the same attribute) are required, this
has to be represented as multiple separate subscriptions. In case of multiple
subscriptions, multiple virtual peers are run on a single physical node.

If two peers i and j note that their subscriptions intersect (i.e. their values
overlap), they will maintain references to each other. If they discover a third
peer k having overlapping subscriptions, they will associate with it. i and j will
still keep references to each other but will reduce them to the difference between

CHAPTER 2. EVALUATION OF MIDDLEWARES 9

their subspace and the subspace shared with k. Publishers join the network in
the same way.

This procedure ensures that a publication will be delivered only to sub-
scribers to it. However, it does not guarantee that all of them are informed.
To achieve this, nodes self-organize into bidirectional rings. Additionally, nodes
have three different types of links:

Random links Links to randomly selected peers in the overlay. Used to dis-
cover nodes and to keep the overlay connected in a single partition.

Overlapping-interest links Reflect the similarities between subscriptions,
used to send published events to random other interested peers. Peers
keep links to the closest nodes according to a given proximity metric. Sub-
2-Sub defines proximity as the distance in the attribute space. Proximity
is 0 if two nodes have overlapping interests and otherwise the Euclidean
distance between the two subscriptions.

Ring links Used to build a ring of nodes. Peers periodically exchange the view
with a neighbouring subscriber.

2.2.2 Spread Publications, Routing

If a publisher wants to publish an event/publication, it sends the message to a
subscriber which will then disseminate it. Therefore the publisher only has to
locate any matching subscriber and deliver the event to it.

Each node runs a dissemination algorithm that listens to incoming events
and forwards them accordingly. On receiving an event, the algorithm checks
if the event has already been seen, because previously seen events are ignored.
If an event is new, it is delivered to the application and forwarded twice: to
the two adjacent neighbours along the ring and to some (one or two) additional
matching subscribers which are selected following a random link in the ring.

Client Arrival and Departure

As Sub-2-Sub is self-organizing, arriving and leaving clients do not represent a
problem for the system. Details about the used procedure are not given in [20]
nor was it possible to find any of them.

Fault Resiliency

The article presenting Sub-2-Sub does not specially mention fault resiliency.
However the authors state that “epidemic protocols have proved to converge
quickly and to produce failure-resistant overlays” [20].

2.2.3 Expected Network Traffic

The paper does not state anything about the network traffic and how the com-
munication is actually done. The propagation speed (in measures of the number

CHAPTER 2. EVALUATION OF MIDDLEWARES 10

of hops) increases with the number of matching subscribers in a logarithmic re-
lation.

2.2.4 Evaluation

Advantages

Sub-2-Sub does have some interesting advantages:

• Accurate: all interested nodes - and nobody else - receive the event.

• Autonomous.

• Self-organized.

• Very scalable.

Disadvantages

Unfortunately, Sub-2-Sub does also have some serious disadvantages:

• Poor expressiveness of the subscription language: only real numbers can
be indicated.

• Few information available, no implementation found.

• Multiple subscriptions by a node require multiple virtual peers on this
node.

Conclusion

Sub-2-Sub does have some interesting features that would be useful for MMOGs.
However, it is very new (2006) and there is very few documentation available.
As a consequence it is impossible to really evaluate if Sub-2-Sub fulfils the
requirements of MMOGs. Additionally, no implementation could be found.

Although it might fit the requirements, Sub-2-Sub does not seem to be the
ideal candidate for a use in this project due to the lack of resources.

2.3 PADRES

PADRES (Publish/Subscribe Applied to Distributed Resource Scheduling)[5,
14] is a publish/subscribe system developed at the University of Toronto.

2.3.1 System Description

PADRES consists of a set of brokers to allow for distributed matching. Rather
than using a centralized server, the clients connect to brokers that are connected
by a peer-to-peer overlay network.

CHAPTER 2. EVALUATION OF MIDDLEWARES 11

Routing

The basis of routing is built by a network of routers connected by an overlay
network. Each broker knows its neighbours from an Overlay Routing Table
(ORT). Messages are routed using advertisements and subscriptions (see to
section 2.1.5 on page 7). Publications are assumed to be the most common
message whereas advertisements are assumed to be the least common messages
as they are flooded to all brokers.

Subscriptions (which may be issued by the client at any time) are routed
according to the Subscription Routing Table (SRT). This SRT is created using
the advertisements the broker receives and states to which broker subscrip-
tions overlapping this advertisement have to be routed. The SRT is a list of
[advertisement, last hop] tuples.

Publications are routed according to the Publication Routing Table (PRT)
which is very similar to the Subscription Routing Table. Contrary to the SRT,
the PRT is created using subscriptions. If a publication overlaps a subscription,
it will be forwarded to the broker indicated in the Publication Routing Table.

Broker Architecture

Each broker has one input queue and multiple output queues, one per message
destination. The matching engine uses the Java Expert System Shell (JESS) to
maintain the SRT and PRT (both are represented as Rete trees). Publications
are inserted into the matching engine as a fact. If a publication matches a
subscription in the PRT, it is placed into the corresponding output queue (and
forwarded to the broker/subscriber). If the message is a subscription, it is first
routed according to the SRT and then inserted into the PRT as a rule.

Subscription Language

The subscription language of PADRES is notationally simple but still
very powerful. Publications are pairs of {attribute, value}. An ex-
ample for a publication is ([class, accident] [city, Toronto]

[severity, 3] [victim, John Doe]).
Subscriptions are very similar to publications and are represented

as conjuncts of {attribute, operator, value}. ([class, eq, accident]

[city, eq, Toronto] [severity, >, 2]) is an example for an atomic sub-
scription

Client Arrival

Arriving clients have to know a broker to which they connect. They then have
to issue subscriptions to get publications.

CHAPTER 2. EVALUATION OF MIDDLEWARES 12

Client Departure

If a client leaves, the client code automatically unsubscribes and unadvertises
any state previously submitted to the broker it is connected to. The broker will
then remove all subscriptions and advertisements belonging to this client. To
complete, the client terminates the RMI connection with the broker.

Crash, kill or exit events of clients trigger the procedure to clean up. If the
connection between the broker and the client is interrupted before, no clean-up
happens. Currently, there is no periodic clean-up but according to the re-
searchers at the University of Toronto plans are to add such a task.

Fault Resiliency

Padres provides fault resiliency in the default version. When detecting a broker
or link failure, a recovery procedure is triggered which maintains the integrity
of the broker network and updates the advertisement routing tables, the sub-
scription routing tables and the publication routing tables.

Cycles in the network are used to accelerate the recovery of publication flows.
Publications are automatically routed around failures. Therefore, routing of
messages is reliable in Padres. Once a publisher/subscriber path is constructed,
no publications are lost.

2.3.2 Special Features

Historic Data Access

In usual content-based publish/subscribe systems, subscribers can only sub-
scribe to data in the future. In addition to that, Padres offers the possibility to
subscribe to data published in the past. Historic data access is enabled through
a database binding. Databases store publications when they are published.

If a broker receives a request for the historic data stored in the database,
it re-publishes the information from the database. The data in the database
cannot be queried. However, the database advertises the content stored in it
and the subscription will be automatically routed to the correct database.

For the client, historic data access is transparent, it simply adds a time
predicate to the subscription and receives data for the appropriate period.

Composite Subscriptions

Padres allows to create complex subscriptions by combining several subscrip-
tions using basic relational operators such as AND and OR. Additionally, advanced
features such as variables, sequences and repetitions are provided. Variables are
used to join subscriptions. The sequence operator ; defines the time sequence
of two publications. As an example, the composite subscription S1; S2 means
that a publication matching s1 is followed by a publication matching S2.

CHAPTER 2. EVALUATION OF MIDDLEWARES 13

The subscription Times(S, n, attr, v) describes a repetition event pat-
tern and means that publications matching S happen n times and attribute attr
increases by step v each loop.

A composite subscription is represented by a subscription tree. Internal
nodes of the tree are logical operators, leaf nodes are primitive subscriptions. A
composite subscription is routed as a unit until it reaches a joint point broker,
that is the first broker at which the different data publishers contributing to
satisfying the composite subscription are located in different directions in the
overlay network.

As a composite subscription is forwarded into the network as far as possible
before it is split, composite subscriptions reduce the network traffic.

2.3.3 Evaluation

In the following, some advantages and disadvantages of Padres are presented.

Advantages

Padres has many positive points:

• Powerful subscription language.

• Content-based.

• Reliable.

• Active project, improvements ongoing.

• Support by University of Toronto.

Disadvantages

Unfortunately, Padres has also some weak points:

• Brokers represent a new bottleneck.

• Uses RMI which represents a bottleneck.

• Advertisements flooded to all brokers.

• Not self-organizing, joining rather complicated.

• Point-to-point communication is not provided but both partners have to
send a separate advertisement and subscription to simulate such point-to-
point communication (see Section 3.3.1 on page 27 for a detailed descrip-
tion).

CHAPTER 2. EVALUATION OF MIDDLEWARES 14

Conclusion

Padres is a very interesting and powerful content-based publish subscribe sys-
tem. The expressiveness of its subscription language could be very useful for
Mammoth, allowing to move some interest management to the brokers.

However, Padres does have three serious disadvantages: First, it is not self-
organizing and thus the arrival of new clients is not managed automatically.
Second, the brokers represent a bottleneck when scaling the system to a big
number of clients (confer also [19]: “Existing solutions typically use a relatively
small set of trusted computers as brokers, which may lead to scalability concerns
for large Internet-scale workloads.”). Third, Padres does not natively support
direct messaging.

2.4 Pastry

Pastry [6] is “a scalable, distributed object location and routing substrate for
wide-area peer-to-peer applications” [17]. Pastry is decentralized, scalable, and
self-organizing. The original version of Pastry has been improved and simplified,
considerably reducing the network overhead [10].

Each node in the Pastry network is assigned a randomly chosen unique
numeric identifier, the nodeId. Each message to be routed has to be given to
Pastry with a numeric key and will then be routed to the node with a nodeId

that is numerically closest to the given key. When a message passes a node, the
application is notified so that it can perform necessary computations.

To minimize the distance messages travel, Pastry uses a scalar proximity
metric (e.g. the number of hops). NodeIds are randomly assigned which in-
creases the probability that the neighbours of a node are in a different network.

As with other distributed hash table (DHT) systems, the strength of Pastry
is its scalability and fault-tolerance.

2.4.1 System Description

All nodes in Pastry use the same software and “any computer that is connected
to the Internet and runs the Pastry node software can act as a Pastry node,
subject only to application-specific security policies.” [17] Since the nodeIds are
assigned randomly when a node joins the system, nodes with adjacent nodeIds
are usually (with a high probability) located in different networks, reducing the
impact of local network problems.

Routing

NodeIds and keys are represented by a sequence of digits with base 2b where b
is a configuration parameter (typical value of 4). Messages are routed to the
node whose nodeId is numerically closest to the given key.

Each of the N nodes in the Pastry network has to maintain two state tables:

CHAPTER 2. EVALUATION OF MIDDLEWARES 15

Routing table The routing table has ⌈log2b N⌉ rows, each of which has 2b − 1
entries referring to a node (by indicating the IP address) with a nodeId

sharing the first n digits with the present node’s nodeId but where the
n+1th digit is different from the one in the present node’s nodeId. When
choosing the node, nodes close to the present node are preferred. Proxim-
ity is determined according to the proximity metric.

Leaf set The leaf set L is the set of nodes with the |L|/2 numerically closest
larger nodeIds, and the |L|/2 numerically closest smaller nodeIds. |L| is
a configuration parameter, with typical value of 16 or 32.

Note that the neighbourhood set defined in the original version of Pastry
has been dropped in the new version.

On receiving a message, the node checks if the key of the message is covered
by the leaf set L, i.e. if it falls within the range of nodeIds covered by the leaf
set L. In this case, the message is forwarded to the node in the leaf set whose
nodeId is closest to the key (i.e. which is the destination node, may be the
present node).

If the destination node is not in the leaf set L, the routing table is used to
forward the message to a node which is chosen based on the length of a prefix
that the nodeId shares with the key. This prefix shared by the next node and
the key must be at least one digit (= b bits) longer than the prefix shared by the
current nodeId and the key. If there is no such node, the message is forwarded
to a node sharing with the key a prefix of the same length as the current nodeId
but that is numerically closer to the key.

Proximity is defined as a scalar proximity metric (number of IP routing hops
or geographic distance).

Routing Maintenance

As the join protocol (cf. 2.4.1) as well as the repair mechanisms do not guaran-
tee to produce the routing table entries closest to the local node, a special route
maintenance task is triggered periodically by each node. The node randomly
selects an entry in each row of its routing table. It then requests the corre-
sponding routing table row from the node associated to this entry to compare
the entries. If the entries differ, the node selects the closer one (by probing) and
installs it in its own routing table.

Node Arrival and Departure

As Pastry is completely decentralized and self-organizing it automatically adapts
to the arrival, departure or failure of a node.

Node arrival An arriving node with nodeId X has to contact an existing
node A. A routes a message using X as key. This message will be delivered
to Z, the node with the nodeId numerically closest to X . The joining node
receives the nth row of the routing table from each node encountered on the

CHAPTER 2. EVALUATION OF MIDDLEWARES 16

path from A to X whose nodeId matches X in the first n − 1 digits. The leaf
set of X is set to the leaf set of Z.

As soon as X has completed its routing table, it sends the nth row of it to
each node appearing as an entry in this nth row. The purpose of this is both to
announce its arrival and to propagate information about other nodes that have
joined previously. The nodes receiving a row will then check if one of the entries
in the row is nearer than the corresponding entry in its own routing table. If
this is the case, the routing table will be updated.

Node departure A node detects that another node has failed or left when it
tries to contact this node and does not get a response. If the failed node Li was
in the lower half of the leaf set of the surviving node L0 (i.e. −⌊|L|/2⌋ < i < 0),
L0 will request the leaf set from L−⌊|L|/2⌋ and extract the nodes from it that are
not in the leaf set of L0. From these nodes it will then choose one to insert into
its leaf set after having verified (by contacting it) that the new node is alive.

If a node appearing in the routing table of another node fails, the routing
entry must be replaced. If Pastry discovers that a node has failed (because
contacting this node to route a message failed), the message is routed to another
node with a numerically closer nodeId but with the same prefix (meaning that
this node is in the same row of the routing table as the failed node).

Malicious Nodes

If a node really fails and does not react anymore, the problem can be solved in
the way described above. If the node continues to be responsive but has started
to behave incorrectly or maliciously, Pastry does not realize that. To change
that, routing would have to be adapted in that the node to which the message
is forwarded would be selected randomly from the nodes satisfying the criteria
(sharing a longer prefix with the destination (key) or having the same prefix
but with nodeId numerically closer than the current one).

Network Partitions

If certain hosts are unreachable for some of the hosts but not for others, multiple
network partitions will be created as Pastry is self-organized. This partition
may persist even though the two partitions could be reconnected, for example
because the network has been repaired. To overcome this problem, Pastry can
use IP multicast to periodically perform an expanding ring multicast search for
other nodes in the neighbourhood. Using this method, isolated partitions will
be discovered and reintegrated.

2.4.2 Performance

The expected number of routing steps is ⌈log2b N⌉ but the performance degrades
gradually with the number of recent node failures. Messages are always delivered
unless ⌊|L|/2⌋ nodes with consecutive nodeIds fail at the same time.

CHAPTER 2. EVALUATION OF MIDDLEWARES 17

2.4.3 Evaluation

Advantages

Pastry has several important advantages for a use in MMOGs:

• Self-organizing and therefore failure resistant.

• Peer-to-peer, scalable.

• All nodes are equal, no special infrastructure (servers, brokers etc).

• Protocol to locate an appropriate contact node for nodes wanting to join
is provided. However, one node must be known to be able to join.

• Few messages sent.

• Software available.

Disadvantages

As every system, Pastry also has some inconvenient properties:

• Proximity metric does not always work as expected (if triangle equality is
not satisfied).

• Join protocol and repair mechanism do not guarantee to find the closest
node.

• Peer-to-peer might abet cheating.

• No reliability guarantees.

Conclusion

Pastry seems to be a very interesting substrate that could be extremely useful
for MMOGs. Many key features of Pastry, namely the fact that it is distributed
and self-organizing, match the requirements of MMOGs. However, Pastry does
not provide any publish/subscribe functionalities and is not reliable.

2.5 SCRIBE

Scribe [8, 11] is a “large-scale event notification infrastructure for topic-based
publish-subscribe applications” [18]. Scribe is based on Pastry (see Section 2.4
on page 14).

CHAPTER 2. EVALUATION OF MIDDLEWARES 18

2.5.1 System Description

The aim of Scribe is to provide an efficient multicast on the application layer.
Based on Pastry and thus using the peer-to-peer-technology with good parti-
tioning and distributing forwarding load over all nodes, Scribe is capable of
scaling to a large number of subscribers, publishers and topics. Basic Scribe
does not provide reliability guarantees nor ordered delivery for a topic, it pro-
vides only best-effort dissemination. Stronger reliability guarantees have to be
built on top of Scribe.

Scribe provides the following API (source of API description: [18]):

create(topicId,commonName) creates a topic with topicId and the name
commonName.

subscribe(topicId, client), subscribe(topicId, client, scribeContent)
causes the given node to subscribe to the topic with topicId. All
subsequently received events for that topic are passed to the specified
node.

unsubscribe(topicId, client) causes the local node to unsubscribe from the
topic with topicId.

publish(topicId, scribeContent) causes the message ’scribeContent’ to be
published in the topic with topicId.

Other than specified in [18], Scribe does not integrate credentials into the
API. However, credentials can easily be added to the scribeContent which is
the message (object) to be sent. It is possible to add such an object to the
subscriptions. Verification of these credentials can be done in a scribePolicy.

As Scribe is fully decentralized and based on peer-to-peer, “each node can
act as a publisher, a root of a multicast tree, a subscriber to a topic, a node
within a multicast tree, and any sensible combination of the above.” [18]

When using Scribe, each node in the network of Pastry nodes has to run
the Scribe application software. This software has to provide the forward and
deliver methods. The forward method is used when a message is routed through
a node whereas the deliver method is called when the message has arrived at
the destination node. Scribe supports four types of messages: subscribe, create,
unsubscribe and publish.

Pastry/Scribe support two implementations for the message format. Origi-
nally, Java Serialization was used for all messages. As of version 2.0 of FreeP-
astry Raw Serialization, which is more efficient but requires additional work, is
also supported.

Topic Management

Each topic in Scribe has a unique topicId (corresponding to the key in Pastry).
For each topic there is a rendez-vous point. There are two possibilities to choose
the rendez-vous point: either the node with nodeId closest to the topicId or

CHAPTER 2. EVALUATION OF MIDDLEWARES 19

the creator of a topic. To make the creator of a group be the rendez-vous point,
a nodeId can be the hash of the textual name of the node and the topicId can
be the concatenation of the nodeId of the creator and the hash of the textual
name of the topic.

To create a topic, a special message with the topicId as key is routed by
Pastry. By definition of Pastry, the message is sent to the node with nodeId

numerically closest to the topicId. This node (its delivery method) then adds
the topic to the list of topics it already knows about.

Routing

Scribe uses multicast trees for routing. The root of this tree is at the rendez-
vous point of each topic (i.e. the node with nodeId closest to the topicId).
“The tree is formed by joining the Pastry routes from each subscriber to the
rendez-vous point” [18]. All nodes in this tree are so-called forwarders for this
topic (not necessarily subscribers). Each of them has a children table, that is a
routing table containing all its children in the multicast tree.

Subscriptions A node that wants to subscribe to a topic has to issue a sub-
scribe message with the topicId as key. The message will be routed by Pastry
towards the rendez-vous point of the topic. At each node the message passes,
the forward method is invoked which will then check if the node is already a
forwarder. If this is the case, the subscribing node is registered as a child (and
the subscription message is stopped). If the current node is not yet a forwarder
for the topic, it adds the subscribing node as a child, creates an entry for the
topic and issues a new subscription to this topic.

A well described example can be found on page 4 of [18] (starting at “Figure
4 illustrates...”).

Unsubscriptions To unsubscribe, a node marks the topic as no longer re-
quired. If the node does not have any children for this topic, that is the children
table is empty, an unsubscribe message is sent to its parent in the multicast
tree. The parent will then remove the child and verify if the unsubscribing child
was its last child; if so, the unsubscribe message is forwarded to its parent which
will do the same handling etc. If there are any other children, the message is
not forwarded.

Note that nodes do not know about their parent until they receive a message
(event, publication) from the parent. If the parent is not already known, the
unsubscription is delayed transparently until the parent is known which is the
case as soon as the first event is received.

Publish, event dissemination If a publisher knows the IP address of the
rendez-vous point, the publish message can be sent directly to the node. Other-
wise, the message is routed using Pastry and the rendez-vous point is then asked
to return its IP address to the publisher which will cache it (as an optimization).

CHAPTER 2. EVALUATION OF MIDDLEWARES 20

If the rendez-vous point has changed (e.g. arrival of a new node), the publisher
sends the message to the wrong node. This node will then forward it to the new
rendez-vous point and ask it to communicate the IP address to the publisher.

Reliability

The basic version of Scribe does not provide reliability guarantees but provides
only best-effort delivery of events. The delivery of events is only reliable and
ordered if the TCP connections between the nodes in the multicast tree are not
broken. Scribe may fail to deliver events or may deliver them out of order if
some nodes in the multicast tree fail.

Provided Reliability Failures in the multicast tree are detected by having
each leaf node in the tree send a heartbeat message (subscription) to its parent.
If a child discovers that its parent is faulty because the subscription message
cannot be routed quickly, it uses Pastry to route it. This routing will repair
the multicast tree. With the default parameters, detecting failure in FreePastry
takes about 30 seconds after trying to send a node a message.

In Pastry, children periodically (e.g. every 3 minutes) send a subscription
to their parent to confirm their interest in the topic. Otherwise, they will be
removed from the children table.

2.5.2 Evaluation

Scribe seems to fulfil many requirements of MMOGs. We shall now look at
some advantages and disadvantages as well as test the implementation using
the tutorial[1].

Advantages

Being based on Pastry, Scribe does have the same advantages as Pastry (confer
Section 2.4.3) but the following points shall be mentioned specially:

• The underlying layer (Pastry) allows to route messages directly to a node.
Therefore, the combination of Scribe and Pastry offers both direct mes-
saging and publish/subscribe.

• Security features can be added.

• Contact established with researcher at Max Planck Institute for Software
Systems, Germany.

• Active project, research ongoing with special focus on increasing the
performance (reduce bandwidth/cpu/memory) and implementing NAT-
support.

CHAPTER 2. EVALUATION OF MIDDLEWARES 21

Disadvantages

Unfortunately, Scribe has some undesired characteristics:

• Topic-based selection mechanism is less powerful than content-based
mechanism and the set of available topics has to be defined and known to
clients.

• Only best-effort reliability guarantees, extension necessary for stronger
reliability.

• Very large numbers of subscribers to a topic can overload the correspond-
ing rendez-vous point.

• Security features are not provided by default.

• Support for NATted nodes is currently broken, clients behind a firewall
cannot connect to the network.

Practical Test

The implementation of Scribe/Pastry has been tested several times, following
the guidelines in the tutorial[1]. There were no problems encountered during
this testing, all tests worked well. Scribe really seems to be ready for use.

Conclusion

Scribe seems to perfectly match the requirements of MMOGs as it is self-
organizing, distributed using peer-to-peer and allows for both direct messaging
and publishing. The disadvantage is the lack of expressiveness of the language
as it is topic-based. However, this should not be a problem regarding Mam-
moth as Mammoth currently uses channels to communicate. Topic-based pub-
lish subscribe is slightly more expressive than channel-based publish subscribe.
Therefore, the change from a channel-based to a topic-based system should not
present a problem.

2.6 Evaluation Summary

The four systems described above are all powerful systems that are very inter-
esting and might all be helpful in a way for MMOGs. All of them do have many
advantages but unfortunately also some disadvantages. We will now choose
two systems to be discussed together with the requirements of MMOGs such as
Mammoth in a detailed evaluation given in Chapter 3.

Sub-2-Sub does have some interesting points, namely that it is a content-
based publish/subscribe that is extremely scalable as it is self-organizing and
uses peer-to-peer. However, there is very few information available about Sub-
2-Sub and the authors declare themselves that there is a lot of work to be done

CHAPTER 2. EVALUATION OF MIDDLEWARES 22

to make it appropriate for real use. Therefore, Sub-2-Sub will not be considered
for use in Postina.

PADRES is a very interesting and very powerful distributed content-based
publish/subscribe system. Unfortunately, it does not provide a native way for
direct messaging. Additionally, the brokers and RMI represent a possible bot-
tleneck. A big advantage of PADRES is that it has been developed at the
University of Toronto and that its researchers would be willing to adapt Padres
to better comply with the requirements of MMOGs. Therefore, PADRES will
be considered in the detailed evaluation.

The big strength of Pastry is its scalability which is due to the fact that
it is completely distributed and peer-to-peer. However, Pastry is not a pub-
lish/subscribe system but only an object location and routing substrate. Pub-
lishing is not provided, only one-to-one communication is possible. To be really
useful, an application has to be built on top of Pastry. Therefore, Pastry will
not be considered in the detailed evaluation.

Scribe is a topic-based publish/subscribe system based on Pastry. It thus has
the advantage of being scalable and the ability to use functionalities provided
by Pastry which is of special interest for the direct messaging. Unfortunately,
Scribe is not content-based which limits its expressiveness. Nevertheless it shall
be considered in the more detailed evaluation as the overall impression is very
good.

Chapter 3

Requirements of MMOGs
and Solutions

The aim of this chapter is to discuss the requirements and possible solutions
for the network layer of MMOGs using Mammoth [4] as an example. First, a
short introduction to Mammoth is given. Second, the necessary communication
within Mammoth is described on a relatively high level of abstraction. Third,
some concrete implementation problems are presented together with possible
solutions with Padres and Scribe. Last, one of the systems is chosen to be
actually implemented.

3.1 Mammoth

Mammoth is a “massively multiplayer game research framework. It’s goal is to
provide an environment for experimentation in areas such as distributed sys-
tems, fault tolerance, databases, modeling and simulation, artificial intelligence
and aspect-orientation. The Mammoth Project was launched in the summer of
2005 as a collaborative project among several McGill professors and a number
of graduate students.” [4] Mammoth has been developed in Java.

Mammoth is a role-playing ‘game’ but unlike a real game it does not have
an actual goal. The range of possible actions is very limited. However, the
possible actions are equivalent to more complicated actions in commercial games
in terms of the underlying treatment. The main activities are walking around
and picking up or dropping items such as tomatoes and flowers. Furthermore,
different players may communicate using a chat box. In addition to the players
and the items there are obstacles such as trees or walls in the world of Mammoth.
These obstacles prevent players from moving in a straight line. Obstacles are
defined statically at creation time and cannot be moved around or modified in
another way.

Currently, the environment of Mammoth is two-dimensional as shown in Fig-
ure 3.1 and the player sees the world from above. However, a three-dimensional

23

CHAPTER 3. REQUIREMENTS OF MMOGS AND SOLUTIONS 24

Figure 3.1: The current 2D view in Mammoth.

Figure 3.2: The beta version of the 3D view of Mammoth.

CHAPTER 3. REQUIREMENTS OF MMOGS AND SOLUTIONS 25

version (see Figure 3.2) is being developed as a separate project branch.
Mammoth uses interest management algorithms to determine the replicas

that have to be distributed by a replication engine (see Chapter 5.2 of [9] for a
detailed explanation of the replication engine). With this structure, a central
server does the interest management for all objects. Each user of Mammoth
gets duplicas of the objects in the world. The server is the master of all these
duplicas, that is to modify its state a duplica has to ask the master for permis-
sion. If the master grants the permit for the change, it has to inform all duplicas
about the change of the state to keep the system consistent. In Mammoth, this
is done by sending a message to the duplicas.

The software architecture of Mammoth is very modular (see Chapter 5.1
of [9]) so that components can be replaced easily. One of the modules is the
network layer, which is the most important component for this project. The
network layer is not specific to the game. The default network layer used by
Mammoth is a simple client-server architecture in which the server knows about
all clients and communicates directly to all connected clients through a TCP
connection. To inform a set of clients about state changes, the master sends a
message to each client. This architecture introduces a serious bottleneck which
should be disposed of in the frame of this project.

3.2 Requirements

A system for the network layer of MMOGs such as Mammoth should allow for
publishing as well as direct messaging (see also [12]).

3.2.1 Scalability

The network layer should support massive scalability, ideally it should be able
to cope with the traffic caused by 3000 simultaneously connected players. In
more detail this implies the following requirements (defined in [12]):

• Create up to 5000 channels on a node. A publisher should be able to
publish on 5000 different channels.

• Client subscribes to up to 5000 channels.

• Up to 1000 clients simultaneously subscribed to a channel.

3.2.2 Message importance/subscription quality

As described above, Mammoth requires a high performance in terms of the
quantity of messages sent. Additionally, it also needs a high quality of the
messaging service.

Priority Possibility to add priority to messages to influence the order in which
the messages are handled at the destination.

CHAPTER 3. REQUIREMENTS OF MMOGS AND SOLUTIONS 26

Reliability Mammoth does require reliability in the sense that all direct mes-
sages must be delivered exactly once. Ideally, there would be two pos-
sibilities: reliable sending for important messages (e.g. item grabbed)
and unreliable sending for less important messages like information about
movements.

Ordering For the current version of Mammoth, strict delivery order is not of
key importance for different objects but it is important for updates of the
same object. However, this must be implemented on the level of Mammoth
and is thus not within the scope of this thesis.

3.2.3 Direct Messaging

Direct messaging between two clients is necessary for Mammoth to remotely
invoke a method and send the reply back to the invoker. Ideally, the following
features are supported by a system:

Synchronous Ideally, synchronous communication would be provided by the
new network layer. However, publish/subscribe systems are asynchronous
by definition and thus native synchronous communication is impossible
with publish/subscribe systems but has to be simulated.

Asynchronous Network latency should not block the game for an unnecessary
long time. Blocking the game until a reply message arrives is undesirable.
Therefore, asynchronous communication should be provided.

Reply A receiver should be able to send an answer to an incoming message.

3.2.4 Interface

The network layer should provide at least the following API to higher levels:

advertise(...) Publish/subscribe. Used by publishers to advertise future pub-
lications. Only necessary with routing based on advertisements.

unadvertise(...) Publish/subscribe. Used by publishers to remove advertise-
ments. Only necessary with routing based on advertisements.

subscribe(...) Publish/subscribe. Subscribe to publications. Separate inter-
faces have to be provided so that a client can subscribe not only itself but
also another client.

unsubscribe(...) Publish/subscribe. Unsubscribe from publications. The ca-
pability to unsubscribe other clients from topics is required.

publish(...) Publish/subscribe. Issue a publication.

send(destination, msg) Direct messaging. Send the message msg to
destination.

CHAPTER 3. REQUIREMENTS OF MMOGS AND SOLUTIONS 27

3.2.5 Arrival of Clients

Arriving clients should be able to easily integrate the system at any time.

3.3 Problems & Solutions with PADRES and
SCRIBE

In this section, the problems to be solved and their possible solutions with
PADRES [14, 5] (confer Section 2.3 on page 10), a content-based pub-
lish/subscribe system, and Scribe (see Section 2.5 on page 17), a topic-based
publish/subscribe system based on the DHT Pastry [17, 10, 6] (see Section 2.4
on page 14), are described.

3.3.1 Communication Duplica ↔ Master

Duplica have to be able to send a request to their master which must then be
able to send a reply. Example: Player 1 wants to take the apple a1 which is
represented in the players duplication space by the duplica D2. D2 then has to
ask the master M whether the apple a1 can be taken away. If this is the case, the
master has to tell all duplicas of apple a1 that apple a1 has been grabbed. If
the apple a1 cannot be grabbed, the master has to send an appropriate answer
to D2 (and only to D2).

Problem: Invocation of Method on Master

The duplicas have to be able to contact the master M, e.g. to invoke a method
on this master.

PADRES To invoke a method on the master, a message has to
be sent to the master. The duplicas all send an advertisement to
announce their intention to send such messages. The advertise-
ment should look like adv [class,eq,invocation],[item,eq,a1].
The master then subscribes to invocations of item a1 by sending
a subscription sub [class,eq,invocation],[item,eq,a1]. To in-
voke a method, the duplica will now create a publication similar to
pub [class,eq,invocation],[item,eq,a1].

The following requirements have to be fulfilled for this method to work effi-
ciently:

• Advertisements are only forwarded if it is necessary, i.e. iff no other ad-
vertisement covering the new one has been forwarded before. This avoids
unnecessary advertisements if several duplica are connected to the same
broker.

• It should be possible to integrate additional information that has not been
advertised to a publication.

CHAPTER 3. REQUIREMENTS OF MMOGS AND SOLUTIONS 28

SCRIBE To invoke a method on the master, a message has to be sent to the
master. Using the underlying Pastry, a message can be sent directly to a specific
node (in this case the master). This method only works if duplicas know the
nodeId of their master.

Problem: Direct Reply by Master

After the invocation, the master has to send a reply to the invoking duplica and
only to this duplica. This direct messaging is not directly within the cope of
publish/subscribe and we have to add this functionality or to simulate it.

PADRES

Using Advertisements/Subscriptions The solution using pure
content-based publish/subscribe is to let the master send an advertisement
for each duplica to announce that it is going to ’publish’ something about/to
this duplica. Each duplica would then send a corresponding subscription (each
duplica subscribes only to publications targeted at itself!). Now, the master
can simply publish a publication that will be forwarded only to the intended
duplica.

This solution follows the publish/subscribe design but leads to a considerable
network traffic. Assuming that there are about 1000 items in the virtual world
of Mammoth and that 3000 players are connected, each player has to receive a
duplica of each of these items. There are 3000∗1000 = 3000000 duplicas created.
As each of these duplicas must be able to receive a reply (direct message) from
its master, this would mean that 300000 advertisements (one advertisement by
duplica) are broadcasted by the master. Furthermore, 300000 subscriptions
would be sent by the duplicates just to be able to send answers from the master
to the duplicas. As these advertisements are all different they cannot be avoided.
However, these advertisements are not sent all at the same time, for each client
connecting there are two advertisements and two subscriptions (one of each type
for each of the master and duplica) sent.

This procedure assumes that the master knows (the IDs of) the duplicas it
manages to be able to integrate the ID into the advertisement announcing the
intention to send something to such a duplica.

A possibility to reduce the amount of advertisement and subscription mes-
sages could be to aggregate items together in groups (of a certain size or by
their class) and then to have the clients do some additional filtering.

Another way to reduce the number of advertisements and subscriptions by
moving some filtering to the client is to send rather unspecific advertisements.
Instead of sending several very similar advertisements with only a single at-
tribute changing, a master could send a single one and not specify the diverging
attribute and add extra information as a serialized object. This would allow the
client to decide whether the message is important or not. Note that this means
that more traffic for publications is generated on the network.

CHAPTER 3. REQUIREMENTS OF MMOGS AND SOLUTIONS 29

If a master moves so that it is connected to another broker all routing tables
have to be updated. Therefore the master should not be moved to another
broker.

Reversed Routing The idea is to hack the routing of Padres so that
the path described by the advertisements sent by the duplica (and normally
used to route subscriptions from the master) is used to route a message from
the publisher to the client. Publications for direct messaging would follow the
advertisements (coming from the destination) instead of the subscriptions.

This procedure would save messages but means that the system has to be
hacked and that there are two types of publications. A separate routing mech-
anism would have to be implemented.

SCRIBE Like the message to invoke a method, with Scribe the reply could
also be sent using the functionalities of the underlying Pastry.

Problem: Published Reply by Master

A master must be able to communicate state changes to all interested items and
duplicas.

PADRES To publish state changes, the master issues an advertisement an-
nouncing that it is going to publish something on this item. Clients interested
in such messages create a subscription and will thus get publications issued by
the master.

All duplicas have to subscribe to their master.

SCRIBE For each item, a topic is created to which interested items and
duplicas can then subscribe to get information about state changes. Each node
in the network can publish messages to this topic.

3.3.2 Information about Moving Players

A player is a replicated object. Thus it simply informs its master about moves.
Informing the master is done using method invocation (see Section 3.3.1). It
is then up to the master to inform all duplicas of the moving player that this
player has moved (using the method described in Section 3.3.1).

3.3.3 Send Serialized Data

In Mammoth, the capability to send serialized data is required. It should not
necessarily influence the routing.

CHAPTER 3. REQUIREMENTS OF MMOGS AND SOLUTIONS 30

PADRES In content-based publish/subscribe systems that use advertise-
ments, all publications have to be advertised in advance and the entire content
of a publication is checked against the subscriptions for routing. Generally it is
not possible to send additional information. However, publication messages in
Padres carry a serializable payload which is normally set to null and does not
get involved in matching. Currently it is used for the monitoring in the net-
work where brokers attach properties and performance metrics of the broker. It
would be possible to use this object to add any other information that is neither
used for routing nor advertised.

SCRIBE As Scribe is a topic-based publish/subscribe system the content of a
message is not used to route the publication. The message already is a serialized
object that is defined by the application using Scribe and that can contain any
information.

3.3.4 Arrival of Clients

PADRES Arriving clients do have to connect to a broker. The list of brokers
is static and defined in the properties. When a client wants to connect to the
network, it randomly chooses a broker (in the static list) and connects to it.

SCRIBE Scribe/Pastry is self-organizing and arrival of clients is handled au-
tomatically. However, a list of join nodes has to be indicated. Clients willing to
join will then iterate through this list of nodes until they find a working one.

3.3.5 Possible Improvements/Extensions

The following improvements/extensions would be possible (later):

PADRES

• Move some game logic to the broker: in case of competitive invocations
the broker does not forward any other publications (that is invocations)
for the same item if one has been sent before and the answer has not yet
arrived. Instead it directly sends a message of refusal to the requesting
client.

• Arriving clients should be automatically forwarded to a broker with free
capacities, for example using load balancing. Problem: load balancing
does introduce some conflicts with other features of Padres. According to
Alex Cheung (University of Toronto) ’resolving this issue is on the long
term agenda.’

CHAPTER 3. REQUIREMENTS OF MMOGS AND SOLUTIONS 31

SCRIBE

• Pastry does not provide any reliability guarantees. However, MMOGs
require reliability. Thus, reliability would have to be added on top of
Pastry.

• Pastry uses peer-to-peer and does not protect against malicious nodes.
As described in Section 2.4.1 on page 16, random selection of the node
to which the message is forwarded could be implemented to reduce the
impact of malicious nodes.

3.4 Comparison

Table 3.4 on page 32 shows an overview of the different features required or
desired for Mammoth and indicates for both Padres and Scribe if they are
provided.

CHAPTER 3. REQUIREMENTS OF MMOGS AND SOLUTIONS 32

Table 3.1: Comparison of Padres and Scribe regarding Mammoth’s needs.

Criterion PADRES SCRIBE
Reliability default possible to add
Scalability brokers bottleneck,

uses RMI
designed for scalability

Priority ok, can be used for fil-
tering

added to serialized ob-
ject, no filtering

Send additional,
unfiltered data

yes, using payload default, no filtering

Synchronous no no
Asynchronous yes, completely yes
Direct messaging no, to be simulated yes, native (with Pastry)
Arrival of client no automatic handling automatic handling, self-

organizing
Departure of
client

limited automatic han-
dling

automatic handling, self-
organizing

Decouple clients yes, completely yes, topics to be defined
Send serialized
objects

using payload default message

Expressiveness very good average
Fault resiliency average good
Network traffic Advertisements flooded optimized
Peer-to-Peer no yes
Distributed distributed matching fully distributed
Support perfect help from developer and

mailinglist
Availability of
code

closed source due to
the use of Jess, to be
changed

BSD-like

CHAPTER 3. REQUIREMENTS OF MMOGS AND SOLUTIONS 33

3.5 Final Decision about Middleware

Scribe and Padres are both very interesting publish/subscribe systems and do
have some advantages for Mammoth. While Padres is brilliant at the level of
the subscription language with its high level of expressiveness, the strength of
Scribe lies in the scalability and the fact that it is self-organizing.

Direct messaging, which is of key importance for MMOGs, has to be simu-
lated using many messages in Padres. Scribe, in contrast, provides native direct
messaging by means of the underlying Pastry. In terms of scalability, Scribe is
better than Padres as the brokers used in Padres represent a bottleneck.

The main disadvantages of Scribe are the lacking reliability guarantees and
its relatively limited expressiveness as it is topic-based. By definition topic-based
publish/subscribe systems are less powerful in terms of the expressiveness than
are content-based publish/subscribe systems. However, the precise definition of
the requirements of the Mammoth network layer has shown that a topic-based
publish/subscribe system is sufficiently powerful for Mammoth.

All in all, Scribe seems to be a complete system that perfectly fits the require-
ments of Mammoth and that can be easily integrated into Mammoth without
having to modify it whereas Padres needs some additional development and
some modifications to be really suitable for Mammoth and MMOGs in general.
Therefore, Scribe/Pastry (or rather its open source version FreePastry 2.1) will
be used to implement the default version of Postina, the new API for the net-
work layer of MMOGs.

Chapter 4

Postina

The aim of this Chapter is to introduce Postina. First, a general description
explaining the capabilities of Postina is given. Second, the API provided by
Postina is described in some detail. Third, the internal functioning of the default
implementation of Postina with Pastry/Scribe is described. Fourth, a user guide
explains how Postina can be used in other applications. Last, the unit testing
of Postina is discussed.

4.1 Description

In this section, Postina, the new API for network layers for MMOGs, shall be
presented in a comprehensible, generally understandable way.

4.1.1 Purpose

Postina is an API designed for the special requirements of network layers in mas-
sively multiplayer online games. That is, it provides interfaces for both direct
messaging as well as publish/subscribe functionalities for the communication
and messaging necessary in such games. The API has also been implemented in
Java using Pastry and Scribe, resulting in a framework that is ready to use and
combines the capabilities of Pastry and Scribe, adds some missing functionalities
and offers an interface specially adapted to MMOGs.

The concrete realization of Postina is an application built on top of Pastry
and Scribe (see Sections 2.4 and 2.5 for a description of Pastry and Scribe,
respectively), which were both built with a special focus on scalability. Based
on Pastry, the provided implementation of Postina is a peer-to-peer-application
in which each client (node) is equal to all others. All clients build a network
and can communicate with each other. Each application executed on a separate
computer represents a client in the P2P-network.

Although the provided implementation of Postina uses Pastry and Scribe,
this is not the only possibility. Postina is designed in a way that Pastry and

34

CHAPTER 4. POSTINA 35

Scribe can be replaced without having to change the application that uses
Postina.

4.1.2 Naming

Postina is an API for the network layer which takes care of the messaging in
MMOGs. The name chosen for Postina reflects this main feature: “la postina”
is the Romansh1 word for a “female mailcarrier”. The proper pronunciation2 is
pOS"tIn@.

4.1.3 Features

Postina offers several features that are of key importance for MMOGs for com-
munication between different players. First, methods for connecting and discon-
necting are provided. Second, a message can be sent directly to a specified user
in an unreliable or alternatively in a reliable (but less efficient) way. Third, a
client can publish information to a topic and all clients subscribed to this topic
will then be informed about the publication. Using this publish/subscribe func-
tionality, multicast communication, that is communication to a group of clients,
can be done easily and in an efficient way. To receive a publication, a client first
has to issue a subscription to the corresponding topic. Please see Section 2.1.4
on page 6 for a more detailed explanation of topic based publish/subscribe.
Fourth, a client can require another client to subscribe to a specified topic.
This allows to concentrate the management of subscriptions to a special client.
This can be used to let a client do interest management for other clients, that
is allow a client to decide in which topics another client is interested.

Any Serializable can be sent as a message in Postina. For the delivery of
messages, Postina offers two possibilities. The application using Postina may
register as a listener which will then be informed about incoming messages or
messages can be put into a queue where the application may then (periodically)
retrieve the messages from. It is not possible to use both methods simulta-
neously as registering a listener deactivates the queue to cleanly separate the
two approaches. However, an additional queue can be emulated easily in the
overlying application when listeners are used.

4.1.4 Special Features

As mentioned above, the Postina provides some special features in addition to
standard publish/subscribe functionality and direct messaging. These features
are useful in massively multiplayer games and shall now be discussed in some
more detail.

1Romansh is a Rhaeto-Romance language and the fourth national language in Switzerland.
Please see http://en.wikipedia.org/wiki/Romansh for more information.

2Note that the Italian word “la post̀ına” has the same meaning but is pronounced differ-
ently: pos"ti:na.

http://en.wikipedia.org/wiki/Romansh

CHAPTER 4. POSTINA 36

Remote Calls

Currently, Postina provides a special feature that allows to issue subscriptions
and unsubscriptions for other clients. With standard publish/subscribe systems
this is not possible.

Reliability

Massively multiplayer games require reliable direct messaging between two
clients (see 3.2.2 on page 25). Postina guarantees that each direct message
is delivered at maximum once. Additionally, all messages are guaranteed to be
delivered under normal circumstances. However, it is not absolutely guaranteed
that the message is delivered as the maximum number of attempts is limited
to avoid starvation. If a message has not been confirmed after this configurable
number of attempts, Postina gives up and does not try again to send the mes-
sage. With a reasonable configuration, the direct messaging can be considered
reliable but a badly chosen parameter can break the reliability.

Postina does not provide any reliability guarantees for published messages.
Reliability is provided for direct messages only. Furthermore, Postina does not
guarantee ordered delivery. Each message is delivered once but the order in
which the messages arrive may be different from the order in which they were
sent.

Detection of Dead Clients

Postina provides a mechanism to detect dead clients, that is a client that has
left the network without disconnecting properly. This can happen when the
client crashes. In such cases it is important that this event is handled correctly
in order to prevent the server from constantly sending messages to a dead client.

The detection of dead clients is done separately by each node in the network.
Once a client has been declared dead, messages to it will not be sent anymore
and a registered listener is informed about the fact that the client has left.

Broadcasting

Postina allows a message to be broadcast to all clients in the network.

4.2 API

This section gives an overview of the Application Programming Interface (API)
provided by Postina. Developers requiring a more detailed description of
the API are invited to look at the JavaDoc available on Postina’s website
(http://postina.zindel.org).

http://postina.zindel.org

CHAPTER 4. POSTINA 37

<<interface>>

Post inaNetworkLayer

+broadcast(content:Serializable)

+connect(): PostinaID

+connect(localBindPort:int,bootAddr:Collection<InetSocketAddress>): PostinaID

+connect(localBindAddress:InetAddress,localBindPort:int,
 bootAddr:Collection<InetSocketAddress>): PostinaID

+disconnect()

+getTopic(topicName:String): PostinaTopic

+publish(topic:PostinaTopic,content:Serializable)

+publish(topicName:String,content:Serializable)

+subscribe(topic:PostinaTopic)

+subscribe(topics:Collection<PostinaTopic>)

+subscribe(topicName:String)

+subscribeOther(topic:PostinaTopic,client:PostinaID)

+subscribeOther(topics:Collection<PostinaTopic>,
 client:PostinaID)

+subscribeOther(topicName:String,client:PostinaID)

+unsubscribe(topic:PostinaTopic)

+unsubscribe(topics:Collection<PostinaTopic>)

+unsubscribe(topicName:String)

+unsubscribeOther(topic:PostinaTopic,client:PostinaID)

+unsubscribeOther(topics:Collection<PostinaTopic>,
 client:PostinaID)

+unsubscribeOther(topicName:String,client:PostinaID)

+send(destination:PostinaID,content:Serializable)

+sendReliable(destination:PostinaID,content:Serializable)

+addMsgListener(listener:PostinaMsgListener)

+removeMsgListener(listener:PostinaMsgListener)

+addClientListener(listener:PostinaClientListener)

+removeClientListener(listener:PostinaClientListener)

+getID(): PostinaID

+getNextMessage(): PostinaMessage

Figure 4.1: The Interface PostinaNetworkLayer.

4.2.1 PostinaNetworkLayer

The interface PostinaNetworkLayer which is also shown in Figure 4.1 on
page 37 is the main interface of Postina and builds its core. Following, the
main methods are described shortly:

broadcast The method broadcast allows a message to be sent to all clients in
the network.

connect The method connect has to be called at first, before any other op-
eration is possible. The method exists in three different variations: The
version without any parameters reads all properties from the property-files
as explained in Section 4.4.4 on page 49. The two other versions allow to
specify the parameters used when establishing the connection.

disconnect The call of disconnect properly disconnects the client from the
network and closes all connections.

getTopic The method getTopic allows the application to get the
PostinaTopic for the specified topic.

CHAPTER 4. POSTINA 38

publish The method publish provides the possibility to release a publication
to a specified topic. For convenience, a method accepting a string name
of a topic is provided.

subscribe The method subscribe is used to subscribe the client to a topic.
The client will then receive all future publications to the specified topic.
For performance reasons the method using a Collection of PostinaTopic
should be used whenever a client has to register to multiple topics at the
same time. For convenience, an additional method accepting a string name
of a topic is provided.

subscribeOther The method subscribeOther allows to call subscribe (see
above) on the client whose PostinaID is given.

unsubscribe The method unsubscribe is the counterpart of subscribe. Call-
ing it unsubscribes the client from a topic and it will not receive any
publications to this topic in the future. As for subscribe, the variation
using a Collection of PostinaTopic should be used whenever a client
has to register to multiple topics at the same time. For convenience, an
additional method accepting a string name of a topic is provided.

unsubscribeOther The method unsubscribeOther allows to call
unsubscribe (see above) on the client whose PostinaID is given.

send The method send is of key importance in Postina as it is used to send a
message directly to a specified client. In contrast to publish, messages
sent using send are delivered only to a single recipient which has to be
indicated. Other clients in the network do not receive this messages.

sendReliable Like send, the method sendReliable is used to send a message
directly to a specified client but with the advantage that the delivery is
reliable. The use of reliable message delivery implies a higher network
load, thus send should be used when reliability is not required. Please see
Section 4.1.4 for more details about the reliability provided.

addListener & removeListener The methods addMsgListener and
removeMsgListener are used to register or unregister a message lis-
tener to Postina. Message listeners have to implement the interface
PostinaMsgListener (see Section 4.2.3). In case of an incoming message,
all message listeners are informed about the new message. There is no
difference between the treatment of a direct message (sent using send)
or a publication (sent using publish). Note that registering a listener
deactivates the message queue.

addClientListener and removeClientListener are used to add or re-
move a client listener, that is a listener that has to be informed when a
client is declared dead (see 4.2.4).

getID The method getID allows a client to retrieve the current PostinaID (see
Section 4.2.2) of the current client.

CHAPTER 4. POSTINA 39

getNextMessage The method getNextMessage allows to retrieve the next
message in the message queue. If a message listener has registered to
Postina, the message queue is deactivated and trying to get a message
from it raises a PostinaNoQueueException. A description of the excep-
tions is given in Section 4.2.6. Although clients have to pass a simple
serializable when sending a message, messages in the queue are of type
PostinaMessage (confer Section 4.2.5).

4.2.2 PostinaTopic

The serializable interface PostinaTopic encapsulates the topic structure ac-
tually used by the underlying implementation. Currently it contains a single
method:

getName The method getName returns the string name of the topic. This
method is mainly for convenience during debugging.

4.2.3 PostinaMsgListener

The interface PostinaMsgListener has to be implemented by all clients that
want to register as a message listener in order to be informed immediately about
an incoming message. There is no separation between incoming direct messages
(that is messages sent only to this client) and incoming published messages.
The message delivered is a PostinaMessage that contains the serializable sent
by the originator (see Section 4.2.5).
The interface contains only one method:

receiveMessage The method receiveMessage is called to deliver a
PostinaMessage to the client.

4.2.4 PostinaClientListener

The interface PostinaClientListener has to be implemented by all clients
that want to register as a client listener. Client listeners are informed when a
client is declared dead, that is when a client has left the network.
The interface contains only one method:

clientLeft The method clientLeft is called with a PostinaID as parameter
to inform the listener that the indicated client has left the network.

4.2.5 PostinaMessage

Clients sending a message simply send a serializable. However, some additional
information has to be added to the message before it is sent through the network.
To make this as easy as possible, the serializable sent by the client is packed into
a PostinaMessage to which information such as the PostinaID of the sender
or (in case of a publication) the PostinaTopic is added. This information can

CHAPTER 4. POSTINA 40

then be retrieved by the receiver as the message is delivered as PostinaMessage
(and not as a simple serializable). The constructors, however, are not accessible
to the clients, a PostinaMessage can only be created by Postina itself.

The following methods are provided to extract the stored information from
a PostinaMessage:

getFrom The method getFrom returns the PostinaID of the sender of the
message.

getContent The method getContent is the most important function as it is
used to retrieve the actual message sent by the originator.

getPriority A PostinaMessage can contain an integer representing a priority
for message handling at destination. This priority can be extracted at the
destination using the method getPriority. Priorities are of no signifi-
cance for the routing in Postina. This feature is provided only so that it
can be used by applications using Postina.

getTopic The method getTopic gets the topic to which the message was pub-
lished. If the message is a direct message, the topic has value null.

4.2.6 Exceptions

In order to communicate abnormal behaviour after illegal requests to the appli-
cation, Postina uses exceptions. The following exceptions are used by Postina:

PostinaJoinFailedException A PostinaJoinFailedException is thrown if
the node cannot join the network of nodes for any reason.

PostinaNoQueueException A PostinaNoQueueException is raised when an
application tries to get a message from the message queue although the
queue has been deactivated. This happens when a listener registers to
Postina to be informed about new messages.

PostinaPropertyFileException A PostinaPropertyFileException signals
that a property file cannot be found or opened.

PostinaPropertyNotFoundException When Postina tries to
read a property that is not defined in the property files, a
PostinaPropertyNotFoundException is raised. Most probably, the
property has to be added to the property file. Please see Section 4.4.4 for
an explanation of the properties to be defined.

PostinaNotConnectedException When a client which is not connected to
the network tries to execute an operation that requires a connection to
the network (almost all operations, such as send, publish, subscribe etc),
a PostinaNotConnectedException is thrown.

PostinaAlreadyConnectedException When a client which is already
connected to the network tries to connect a second time, a
PostinaAlreadyConnectedException is thrown.

CHAPTER 4. POSTINA 41

4.3 Implementation With Pastry/Scribe

This section explains the internal structure of the default version of Postina, that
is Postina using Pastry/Scribe. Although the default version of Postina comes
with Pastry/Scribe, any other infrastructure providing both publish/subscribe
and direct messaging may be used to implement Postina.

Internally, Postina is split into three different layers. The first layer sim-
ply implements the public interface and calls the corresponding methods in the
second layer. The second layer is the part providing the additional features
and combining the different capabilities of Pastry/Scribe, thus wrapping Pas-
try/Scribe into the interface of Postina. This second layer accesses the third
layer which actually is Pastry/Scribe itself. This way, the implementation de-
tails of Pastry/Scribe are perfectly encapsulated and do not matter for the
realisation of the other layer.

The UML diagram in Figures 4.2 and 4.3 shows the structure3 of Postina
with Pastry/Scribe. However, the most important classes shall be described
shortly in this section, grouped by functionality. All descriptions except those
of the special features of Postina are oriented to readers knowing Pastry/Scribe
who want to understand how Pastry/Scribe is used in Postina. Please go to
Section 4.2 on page 36 if you are looking for a description of the API of Postina.

4.3.1 Main Application

The classes ScribeNetworkLayer and ScribeApplication are the most im-
portant part of the implementation of Postina as they translate the calls
of the interface methods of Postina into calls to Pastry/Scribe. The class
ScribeNetworkLayer implements the main interface PostinaNetworkLayer

and contains a reference to ScribeApplication to which it also regis-
ters as a listener. The class ScribeApplication implements the interfaces
ScribeMultiClient and Applicationwhich are both necessary to run a Scribe
application on top of a Pastry node. Additionally, the ScribeApplication con-
tains a reference to ScribeImpl which is the provided implementation of Scribe.

ScribeNetworkLayer prepares the outgoing messages for the transport and
then uses the reference to pass all outgoing messages to ScribeApplication

which will then, in turn, forward them to Scribe. Incoming messages are re-
ceived by ScribeApplication which handles them before delivering them to
the ScribeNetworkLayer that has registered to ScribeApplication as a lis-
tener. The ScribeNetworkLayer then offers the message to the application us-
ing Postina, either by use of the queue or the listener methods. Special request
messages that require an action (confer Section 4.1.4) by the node are handled
directly by ScribeApplication and not forwarded to its listeners. Reliability
is also provided by ScribeApplication

3For the sake of simplicity Scribe/Pastry is not specified in detail. Please confer [6] for
more details.

CHAPTER 4. POSTINA 42

<<interface, serializable>>

Post inaID

<<interface, serializable>>

PostinaTopic

+getName(): String

<<interface>>

ScribeMult iCl ient
defined by Scribe/Pastry

+anycast(topic:Topic,content:ScribeContent): boolean

+deliver(topic:Topic,content:ScribeContent)

+childAdded(topic:Topic,child:NodeHandle)

+childRemoved(topic:Topic,child:NodeHandle)

+subscribeFailed(topics:Collection<Topic>)

<<interface>>

Applicat ion
defined by Pastry

+forward(message:RouteMessage): boolean

+deliver(id:Id,message:Message)

+update(handle:NodeHandle,joined:boolean)

ScribeApplicat ion

-msgListeners: Collection<PostinaMsgListener>

-endpoint: Endpoint

-scribe: ScribeImpl

-clientListeners: Collection<PostinaClientListener>

-messageCounter: int

-messageHandlerThread: Thread

-outstandingAcks: LinkedList<MessageID>

-outstandingSubscriptions: LinkedList<Topic>

-sentMessages: Hashtable<MessageID,PostinaReliableScribeTransportMessage>

#<<constructor>> scribeApplication(node:Node)

#directSend(destination:NodeHandle,msg:ScribeMessageContent)

#directReliableSend(destination:NodeHandle,
 msg:PostinaReliableScribeTransportMessage)

#sendRequest(destination:NodeHandle,requestMessage:ScribeRequestMessage)

+addListener(listener:PostinaMsgListener)

+removeListener(listener:PostinaMsgListener)

+addClientListener(listener:PostinaClientListener)

+removeClientListener(listener:PostinaClientListener)

#destroy()

#informListeners(message:PostinaMessage)

#publish(topic:ScribeTopic,content:ScribeTransportMessage)

#subscribe(topics:Collection<Topic>,content:ScribeTransportMessage)

#subscribe(topic:ScribeTopic,content:ScribeTransportMessage)

#unsubscribe(topic:ScribeTopic)

#unsubscribe(topics:Collection<Topic>)

-addOutstanding(topics:Collection<Topic>)

<<interface>>

Post inaMsgListener

+receiveMessage(msg:PostinaMessage)

Scr ibeNetworkLayer

-node: TLPastryNode

-scribeApp: ScribeApplication

-nodeID: PostinaID

-topics: Hashtable<String, PostinaTopic>

-msgListeners: Collection<PostinaMsgListener>

-messageQueue: Collection<PostinaMessage>

-env: Environment

-pastryIdFactory: PastryIdFactory

-clientListeners: Collection<PostinaClientListener>

<<interface>>

Scribe
defined by Pastry/Scribe

+subscribe(topics:Collection<Topic>)

+subscribe(topics:Collection<Topic>,client:ScribeMultiClient,
 content:ScribeContent,hint:NodeHandle)

+subscribe(topics:Collection<Topic>,client:ScribeMultiClient,
 content:RawScribeContent,hint:NodeHandle)

+subscribe(topic:Topic,client:ScribeMultiClient)

+subscribe(topic:Topic,client:ScribeMultiClient,
 content:ScribeContent,hint:NodeHandle)

+subscribe(topic:Topic,client:ScribeMultiClient,
 content:RawScribeContent,hint:NodeHandle)

+unsubscribe(topic:Topic,client:ScribeMultiClient)

+unsubscribe(topics:List<Topic>,client:ScribeMultiClient)

+publish(topic:Topic,content:ScribeContent)

+anycast(topic:Topic,content:ScribeContent)

+getPolicy(): ScribePolicy

+getEnvironment(): Environment

+destroy()

+...()

ScribeID

-pastryNodeHandle: NodeHandle

#<<constructor>> scribeID(nodeHandle:pastryNodeHandle)

#getPastryNodeHandle(): NodeHandle

NodeHand le
defined by Pastry

ScribeTopic

-topicName: String

#<<constructor>> ScribeTopic(topicName:String,
 idFactory:IdFactory)

Topic
defined by Pastry/Scribe

#Id: id

+<<constructor>> Topic(factory:IdFactory,
 name:String)

+<<constructor>> Topic(id:Id)

+<<constructor>> Topic(buf:InputBuffer,endpoint:Endpoint)

+getId(): Id

+getId(factory:IdFactory,name:String): id

+equals(o:Object): boolean

+hashcode(): int

+toString(): String

+serialize(buf:OutputBuffer)

<<interface>>

Post inaNetworkLayer

+broadcast(content:Serializable)

+connect(): PostinaID

+connect(localBindPort:int,bootAddr:Collection<InetSocketAddress>): PostinaID

+connect(localBindAddress:InetAddress,localBindPort:int,
 bootAddr:Collection<InetSocketAddress>): PostinaID

+disconnect()

+getTopic(topicName:String): PostinaTopic

+publish(topic:PostinaTopic,content:Serializable)

+publish(topicName:String,content:Serializable)

+subscribe(topic:PostinaTopic)

+subscribe(topics:Collection<PostinaTopic>)

+subscribe(topicName:String)

+subscribeOther(topic:PostinaTopic,client:PostinaID)

+subscribeOther(topics:Collection<PostinaTopic>,
 client:PostinaID)

+subscribeOther(topicName:String,client:PostinaID)

+unsubscribe(topic:PostinaTopic)

+unsubscribe(topics:Collection<PostinaTopic>)

+unsubscribe(topicName:String)

+unsubscribeOther(topic:PostinaTopic,client:PostinaID)

+unsubscribeOther(topics:Collection<PostinaTopic>,
 client:PostinaID)

+unsubscribeOther(topicName:String,client:PostinaID)

+send(destination:PostinaID,content:Serializable)

+sendReliable(destination:PostinaID,content:Serializable)

+addMsgListener(listener:PostinaMsgListener)

+removeMsgListener(listener:PostinaMsgListener)

+addClientListener(listener:PostinaClientListener)

+removeClientListener(listener:PostinaClientListener)

+getID(): PostinaID

+getNextMessage(): PostinaMessage

+isConnected(): boolean

Node
defined by Pastry

ScribeImpl
defined by Pastry/Scribe

Created topics are stored

so that no unnecessary

objects are created

For convencience, the name (string) of

a topic may be given instead of the object.

It will be replaced by the object internally.

Syntactic sugar, for all publish, (un)subscribe.

If it exists, return topic.

Else create topic, add to

hashtable, return.

subscribe

another client.

The localBindAddress can be used

to specify the network interface

the application should bind to.

<<interface>>

Post inaCl ientListener

+clientLeft(clientID:PostinaID)

+

Figure 4.2: The UML diagram representing the structure of Postina, part 1.

CHAPTER 4. POSTINA 43

<<interface, serializable>>

Post inaMessage

+getFrom(): PostinaID

+getContent(): Serializable

+getPriority(): int

+getTopic(): PostinaTopic

<<interface>>

Scr ibeContent
defined by Scribe/Pastry

Scr ibeRequestMessage

-topics: Topic

-content: ScribeContent

#<<constructor>> ScribeRequestMessage(topics:Collection<Topic>,
 content:ScribeTransportMessage)

#getTopic(): ScribeTopic

#getContent(): ScribeContent

Subscr ibeRequest

#<<constructor>> SubscribeRequest(topics:Collection<Topic>,
 content:ScribeTransportMessage)

Unsubscr ibeRequest

#<<constructor>> UnsubscribeRequest(topics:Collection<Topic>)

Message
defined by Scribe/Pastry

Post inaScr ibeTransportMessage

-from: PostinaID

-topic: PostinaTopic

-content: Serializable

-priority: int

#<<Constructor>> PostinaScribeTransportMessage(from:PostinaID,
 topic:PostinaTopic,
 content:Serializable,
 priority:int)

#<<Constructor>> PostinaScribeTransportMessage(from:PostinaID,
 topic:PostinaTopic,
 content:Serializable)

priority: if no priority is given,

the priority 5 is assumed by default

ListTransformation

+<<static>> getScribeTopicArrayList(coll:Collection<PostinaTopic>): Collection<ScribeTopic>

+<<static>> getTopicArrayList(coll:Collection<ScribeTopic>): Collection<Topic>

+<<static>> getPostinaTopicCollection(coll:Collection<Topic>): Collection<PostinaTopic>

<<exception>>

PostinaJoinFailedException

<<exception>>

Post inaNoQueueExcept ion

<<exception>>

Post inaPropertyNotFoundExcept ion

<<exception>>

Post inaPropertyFi leExcept ion

Proper tyManager

-generalProperties: Properties

-localProperties: Properties

-<<static>> readPropertyFiles()

+<<static>> getProperty(key:String): String

<<serializable>>

AckMessage

-messageID: MessageID

+getMessageID(): MessageID

<<serializable>>

Message ID

-counter: int

-messageNumber: int

-senderId: Id

-destinationId: Id

-destinationHandle: NodeHandle

-sendTimeStamp: long

+getCounter(): int

+getDestinationHandle(): NodeHandle

+getDestinationId(): Id

+getMessageNumber(): int

+getRemainingTimeOut(timeout:long): long

+getSenderId(): Id

+getSendTimeStamp(): long

+hasTimedOut(timeout:long): boolean

+incCounter()

+resetSendTimeStamp()

Id
defined by Scribe/Pastry

Post inaRel iableScr ibeTransportMessage

-messageID: MessageID

+getMessageID(): MessageID

+setMessageID(messageID:MessageID)

<<serializable>>

L inkedHashSet<E>

-hashSet: HashSet<E>

+linkedList: LinkedList<E>

+add(e:E)

+contains(e:E): boolean

+getFirst(): E

+isEmpty(): boolean

+removeFirst(): E

messageHandler

-defaultTimeOut: int

-doomedClients: Hashtable<Id, Integer>

-fatalNumLostMsg: int

-killedClients: HashSet<Id>

-maxNumTries: int

-receivedMessagesIDs: LinkedHashSet<MessageID>

-sleep: long

+cancelMessage(msgId:MessageID)

+checkAcks(): long

+clientIsAlive(client:Id): boolean

+doomClient(nh:NodeHandle,client:Id)

+handleAck(ack:AckMessage)

+handleMessage(message:Message)

+handleReliable(msg:PostinaReliableScribeTransportMessage)

+killClient(handle:NodeHandle,client:Id)

+pardonClient(client:Id)

+removeOldMessages(storageTime:long)

+resendMessage(msgId:MessageID)

+sendAck(msg:PostinaReliableScribeTransportMessage)

<<exception>>

Post inaNotConnectedExcept ion

<<exception>>

Post inaAlreadyConnectedExcept ion

Figure 4.3: The UML diagram representing the structure of Postina, part 2.

CHAPTER 4. POSTINA 44

RequestMsg

Server Client

execute
request

Figure 4.4: Remote calls with Postina.

4.3.2 Messaging

Postina with Pastry/Scribe encapsulates the serializable that the client wants
to send into a PostinaMessage. This interface is implemented by the class
PostinaScribeTransportMessagewhich also implements the Pastry/Scribe in-
terfaces Message and ScribeContent.

4.3.3 Subscriptions

Postina contains a special mechanism to increase the reliability of subscriptions
by keeping trace of subscriptions that have not yet been cancelled and that
have not yet succeeded. When Postina is informed by Pastry/Scribe that a
subscription has failed, it will re-subscribe to the corresponding topic if no
unsubscription has been issued in the meantime.

4.3.4 Identification

The class ScribeID implements the interface PostinaID and thus provides the
unique identifier of a node in the network. ScribeID is simply a container of
the NodeHandle provided by Pastry.

4.3.5 Remote Calls

To implement remote calls, special messages of type ScribeRequestMessage

and its subtypes SubscribeRequest and UnsubscribeRequest are used, con-
taining the collection of Topic which the receiver should subscribe to or un-
subscribe from, respectively. These messages are sent to the client using direct
messaging as shown in Figure 4.4. Upon receipt of such a special message, the
client takes the appropriate action, that is subscribes to the collection of topics
or unsubscribes from the collection of topics.

CHAPTER 4. POSTINA 45

Msg

Ack

ReceivedMsg

Sender Receiver Game Client

Figure 4.5: Reliability: Behaviour with usual data flow.

ReceivedMsg

Msg

Msg

Ack

Sender Receiver Game Client

Figure 4.6: Reliability: Behaviour with lost message.

The system for such simulated “remote calls” is built in a way in that it can
be extended easily.

4.3.6 Reliability

MMOGs need reliable direct messaging and thus Postina guarantees that a
message is delivered (see 4.1.4 for more details). However, Pastry does not
provide reliability. Therefore, this feature has to be added on top of Pastry.

To achieve this reliability, a mechanism using acknowledgements is imple-
mented. Sent messages are buffered by the sender. Upon receipt of a message,
a client sends an acknowledgement back to the sender (see Figure 4.5) which
will then remove the message from its buffer. If the sender does not receive
the acknowledgement message within a specified amount of time, it resends the
message (see Figure 4.6). Additionally, the receiver keeps track of the messages
it has received during a certain period and rejects messages it already has re-
ceived but still sends back an acknowledgement. This is important when the
acknowledgement and not the actual message was lost (see Figure 4.7).

CHAPTER 4. POSTINA 46

Msg

Ack
ReceivedMsg

Msg

Ack

Sender Receiver Game Client

Figure 4.7: Reliability: Behaviour with lost acknowledgement.

4.3.7 Detection of Dead Clients

The detection of a dead client is tricky as a client should never be declared
dead wrongfully. Postina uses the reliable direct messaging described above to
detect the leave of a client: once the delivery of a message to a client definitely
fails, the client is suspected dead. When a client has been suspected dead for a
configurable number of times, it is declared dead. Upon arrival of any message
from a client which has been suspected dead, the client is ’pardoned’ and no
more suspected dead.

4.3.8 Broadcasting

The implementation of the broadcasting with Pastry/Scribe is straightforward.
After connecting to the network, a node immediately subscribes to a special
topic. When a message has to be broadcasted to all nodes, it is simply published
to this special topic.

4.4 User Guide

This Section shall give a comprehensive guide for users of Postina. It both
addresses the general use and some specific problems that might emerge when
using Postina.

4.4.1 How To Use The Provided Version

This section explains how to use Postina with Pastry/Scribe. Postina is designed
in a way that its use within another application is very simple. Only a few steps
are necessary if you want to use Postina in another project:

1. Add the jar-files for Postina and Pastry to the classpath of your project.

CHAPTER 4. POSTINA 47

2. Copy the files postina.properties, log4.properties and
freepastry.params to a location in the classpath.

3. Adjust the parameters in postina.properties (see Section 4.4.4 for a
more detailed description of properties).

4. Instantiate the class ScribeNetworkLayer.

5. Connect to the network using one of the three connect-methods in
ScribeNetworkLayer. This will create the node and opens the neces-
sary sockets. The operation may take a while. Note that the port defined
in the properties has to be available. The method connect returns a
PostinaID which you probably will want to store into a field.

6. If your application has to be informed about a dead client, register it to
the ScribeNetworkLayer as a PostinaClientListener.

7. If you want Postina to inform your application about new messages, regis-
ter it to the ScribeNetworkLayer as a PostinaMsgListener. Otherwise
you will have to poll the queue yourself.

8. Enjoy Postina and use one of the many methods defined in the interface
PostinaNetworkLayer by calling them on the ScribeNetworkLayer. The
available methods are described in Section 4.2.1 on page 37.

In case of troubles, Section 4.4.8 might provide useful hints. Note that Java 1.5
or newer is required to use Postina.

4.4.2 License

Postina has been released under the GNU Lesser General Public License. The
license can be found on http://www.gnu.org/licenses/.

4.4.3 Multiple Network Interfaces

Many computers, especially servers, have two or more network interfaces. If the
wrong network interface is chosen, the Pastry node is not visible to other nodes
and the nodes cannot communicate with each other. However, in Pastry all
nodes have to be accessible to all other nodes. That is, if the wrong interface is
chosen, the Pastry network will not work. For technical reasons it is not possible
to have a node listen on more than one interface4, thus a sensible choice must
be made.

By default, the IP address of the network interface is requested from the
operating system automatically by Pastry. This means that the choice is random
and not necessarily good, possibly leading to a broken system.

4By definition, each node in Pastry is bound to an interface. Thus, two nodes would have
to be build to listen on two interfaces and hence two ‘rings’ would be created. MultiRing
would have to be used to communicate between these two networks.

http://www.gnu.org/licenses/

CHAPTER 4. POSTINA 48

rogue.cs.mcgil l.caoni.cs.mcgill.ca

halo.cs.mcgill.ca

Internet

Figure 4.8: The topology of the game research servers.

As an example, we consider the situation at the School of Computer Science
at McGill University which is shown in Figure 4.8: There are three servers
(rogue, halo and oni) that can be used as Pastry nodes. All three servers have
two interfaces, an internal one which is used only for communication between
these three servers (represented using red in the Figure) and an external one
which is used for communication with all other clients (green). If the internal
interface is chosen to bind to by Pastry, the three servers easily build a working
network (red lines) but no other node can join this network. We have to use
the external interface for the Pastry node (green lines, the three servers can also
communicate over the external interface), the internal interface cannot be used.

Solution with Postina

It is not possible to let the application choose the right interface as there is
no way to decide automatically which interface is accessible to other nodes.
Therefore, this choice has to be made by a human.

The following procedure is used to decide which interface has to be chosen.
The tests are given in decreasing priority order:

1. Address of the interface passed to the connect method as parameter (see
the description in Section 4.2.1 on page 37).

2. Address of the interface defined as property localBindAddress in a prop-

CHAPTER 4. POSTINA 49

erty file (see Section 4.4.4).

3. Address of the interface returned by the operating system.

These procedure is guaranteed to work if there is a network interface present.

4.4.4 Properties

Postina uses the Properties of Java and looks out for two different
files in the classpath: the default properties stored in a file called
postina.properties and local properties defined in a file containing the host-
name in lowercases in its name. The exact format of the local file name is
postina.<hostname>.properties where <hostname> is the fully qualified
hostname in lowercases of the machine for which these properties should be
applied. Example: postina.se-6.cs.mcgill.ca.properties

The default properties can be overridden by defining the property in the local
property file as a local property has higher priority than a default property.

Format

As the Java properties are used in Postina, the property files have to comply with
the format defined in the Java class Properties [7]. Each line has to contain a
single property which always has the format propertyName = propertyValue.
Please see the paragraph below for a complete list of possible properties with
possible values.

Available Properties

This paragraph gives a complete list of all properties available together with a
short description of each property:

bootAddresses The bootstrap nodes to be used when joining the net-
work. Format: comma-separated list of IP:Port. Example:
132.206.3.142:8899,132.206.3.140:8899,132.206.3.141:8899

localBindAddress The address of the network interface to which Postina
should bind. To be used when a machine has multiple interfaces. For-
mat: IP address. Example: 132.206.51.88

localBindPort The port that should be used by Postina for the network com-
munication. Format: Integer value. Example: 8899

reliability.timeout The number of milliseconds before a message times out.
Format: Long value. Example: 40000

reliability.maxNumTries The number of times Postina should attempt to
resend a message before giving up. Format: Integer value. Example: 4

reliability.fatalNumLostMsg The number of definitely lost messages that
are allowed before a client is declared dead. Format: Integer value. Ex-
ample: 10

CHAPTER 4. POSTINA 50

<<interface, serializable>>

Post inaID
<<interface, serializable>>

PostinaTopic

<<interface>>

Post inaMsgListener

<<interface>>

Post inaNetworkLayer

<<exception>>

PostinaJoinFailedException

<<exception>>

Post inaNoQueueExcept ion
<<exception>>

Post inaPropertyNotFoundExcept ion

<<exception>>

Post inaPropertyFi leExcept ion

<<interface>>

Post inaCl ientListener

Proper tyManager

-generalProperties: Properties

-localProperties: Properties

-<<static>> readPropertyFiles()

+<<static>> getProperty(key:String): String

<<interface, serializable>>

Post inaMessage

<<exception>>

Post inaNotConnectedExcept ion

<<exception>>

Post inaAlreadyConnectedExcept ion

Figure 4.9: The key interfaces of Postina.

4.4.5 Upgrade Pastry/Scribe

To replace the version of FreePastry by a newer one, the jar-file of Pastry simply
has to be replaced by a new one.

4.4.6 How To Replace Pastry/Scribe

Although Postina comes with Pastry/Scribe by default, developers are free to
choose another underlying system. As the API of Postina is well separated from
the effective implementation, switching to another system is very easy. The new
system simply has to implement the interfaces defined by Postina as shown in
Figure 4.9 on page 50 (see Section 4.2 on page 36 for a description of the API).

In terms of the Java code, all interfaces defined in the package
ca.mcgill.cs.postina have to be implemented by the new system. Addi-
tionally, the package ca.mcgill.cs.postina.util.properties has to be kept
as it is and the format and naming of the property files has to remain unaffected.
In other words, the only code that has to be replaced to use another system is
the package ca.mcgill.cs.postina.scribe.

CHAPTER 4. POSTINA 51

4.4.7 Logging

Postina uses log4j[3] for logging. By default, logging messages of level INFO
or higher are printed on the standard output, that is on the terminal. This
setting can be changed in the configuration file log4j.properties which has
to be added to the classpath.

4.4.8 Trouble Shooting

This section gives some important, possibly time-saving, hints to the users of
Postina:

• If multiple nodes of Postina are run on the same computer, the same
properties are used. Thus, each node tries to bind to the same port. As
this is not possible, Postina using Pastry/Scribe automatically binds to
the next free port it can find. The used port is indicated in the message
printed out when starting up Postina (“Finished creating new node:”).

• The local properties override the global properties, that is if a change
in the properties does not have any effect, the same property might be
defined in a machine-specific file. The use of the properties is explained
in Section 4.4.4.

• If you are using Postina in a network using Network Address Translation
(NAT) or firewalls please read Section 6.1 on page 59.

4.5 Unit Testing

Postina has been tested using the JUnit testing framework. Unit tests are
provided to verify the proper operation of Postina. These tests check all interface
methods. Special attention was paid to the following criteria:

Message delivery Messages have to be delivered to the appropriate clients.
Clients do not unintentionally receive messages, that is publications are
delivered only to subscribers and direct messages only to the destination.

Exceptions Exceptions such as the PostinaNotConnectedException have
only to be thrown if necessary.

Topic management The creation of topics works.

Queue & Listener Messages can be delivered using a listener or using a
queue.

Remote requests Clients can ask other clients to subscribe or unsubscribe.

Connect The connection can be established when the correct parameters are
passed. If it fails, the appropriate exception is thrown.

Chapter 5

Application of New
Network Middleware in
Mammoth

As a proof of concept, the new network middleware shall be integrated into an
existing massively multiplayer game. We will use Mammoth to demonstrate
the practical application of Postina. The design of Mammoth allows to easily
exchange the network engine without having to modify the rest of Mammoth.
This procedure is explained in this chapter. First, some preparatory work on
Mammoth is documented. Second, the interface of the network layer of Mam-
moth is explained. Third, the steps to be done to create a new network layer are
explained, followed by instructions to actually select another engine. Fifth, the
integration of Postina into Mammoth is discussed in some more detail. Last,
some experimental results show how scalable the new solution with Postina is.

5.1 Preparatory Work

In order to be able to replace the network layer of Mammoth, some prepara-
tory work was necessary. The existing network layer of Mammoth had first
to be cleaned up. All interfaces visible to Mammoth are now in the package
Mammoth.NetworkEngine and each possible network engine of Mammoth should
be packed into a subpackage of Mammoth.NetworkEngine.

To actually instantiate a network layer, the factory method
pattern is now used. The factory is defined in the class
Mammoth.NetworkEngine.NetworkEngineFactory and provides three methods:

getNetworkEngineServer() The method getNetworkEngineServer with-
out any parameters returns a standard new NetworkEngineServer.

getNetworkEngineServer(ServerListener listener) The method

52

CHAPTER 5. APPLICATION OF NEW NETWORK MIDDLEWARE 53

getNetworkEngineServer with a ServerListener as parameter re-
turns a new NetworkEngineServer with a listener registered to it. The
listener is informed whenever a new client connects to the server.

getNetworkEngineClient() The method getNetworkClient is the only
method to get a new NetworkEngineClient.

The choice of the type of the server or client returned is taken based on a
parameter defined in the properties. Please see Section 5.2.3 for an explanation
of how to select a type.

A third major change was necessary to Mammoth to prepare it for the in-
tegration of Postina. Up to this thesis, the unique identifier of a Mammoth
client was a simple integer. Although this might be sufficient for the existing
client/server network layer, alternative network layers such as Postina will prob-
ably use more sophisticated identifiers. Thus, this integer identifier has now been
refactored into a NetworkEngineID that can encapsulate any identifier required.

Finally, the way the server in Mammoth issues subscriptions for other clients
has been adapted in two ways to better fit distributed middlewares for the
network layer. First, multiple subscriptions for a client that are issued by the
server at the same time are packed together into a Collection to reduce the
number of messages sent. Second, the server keeps trace of all subscriptions
issued for a specific client. This information is then used to avoid unnecessary
subscriptions or unsubscriptions in that a subscription is only issued if a client
has not yet been subscribed to the given topic or only unsubscribed if it is indeed
subscribed to the topic. This was not the case with the previous network engine.

5.2 User Guide

5.2.1 Interfaces Of The Network Engine

The network engine contains several interfaces that have to be implemented
when integrating a new middleware into Mammoth. The interfaces are all in
the package Mammoth.NetworkEngine. Following, the most important interfaces
to be respected when integrating a new middleware into Mammoth are explained
shortly:

NetworkEngineClient The interface NetworkEngineClient is the most im-
portant interface as its methods are those offering the desired function-
alities to Mammoth. The client has to be used each time Mammoth is
started. Each player is a client.

NetworkEngineServer The NetworkEngineServer is responsible for the in-
terest management and the authentication.

NetworkEngineID The NetworkEngineID is the new unique identifier of a
client in the network.

CHAPTER 5. APPLICATION OF NEW NETWORK MIDDLEWARE 54

NetworkMessage A NetworkMessage is simply a container for the serializable
that has to be sent over the network and for the NetworkEngineID of the
originator of the message.

5.2.2 How To Integrate Another Middleware

The integration of another middleware into Mammoth is not a complicated
task as the network engine has been adapted to ease the replacement of the
middleware. To change the middleware, the following steps are necessary:

1. Create a new subpackage of the package Mammoth.NetworkEngine.

2. Implement all interfaces of the network engine. See 5.2.1 for a description
of the important interfaces to be implemented.

3. Modify the class Mammoth.NetworkEngine.NetworkEngineFactory. You
will have to add another else if to each of the three get-methods defined
in this factory class.

Provided that all interfaces are respected, no more changes are necessary within
Mammoth. Section 5.2.3 explains how the middleware has to be activated.

5.2.3 How To Select The Middleware To Be Used

Once a network engine has been created for Mammoth, switching from one
engine to another is extremely straightforward. All you have to do is to change
the property network.engine in the property file mammoth.properties which
is found in the folder Game.

Currently the following options are possible for the property
network.engine:

alf The original network layer of Mammoth using a client-server architecture.

postina The network layer described in this thesis, using Pastry and Scribe.

5.3 Integration of Postina Into Mammoth

Postina was integrated into Mammoth as described in Section 5.2.2 and most
of the new code is self-explaining and documented in the JavaDoc. However,
some special design decisions shall be explained in more detail in this section.

5.3.1 Client vs. Server

In usual peer-to-peer systems, all nodes are equal and there is no notation
of a “server” or a “client”. With regard to Postina, all connected nodes do
have the same capabilities. However, Mammoth relies on the fact that there
is a server managing the clients. Therefore, a solution respecting both prin-
ciples had to be found. In the network layer for Postina in Mammoth, a

CHAPTER 5. APPLICATION OF NEW NETWORK MIDDLEWARE 55

PostinaNetworkEngineServer extends a PostinaNetworkEngineClient. A
server thus is a normal client but has some additional functionalities and its
behaviour on receipt of a message is different from the behaviour of a normal
client in that it checks for other types of messages.

5.3.2 Request Message

Request messages are a special type of messages that signal to the receiver
that the message has to be treated in a special way and should not be passed to
Mammoth as it is. Currently, such request messages are used for two operations:

Blocking Message When a client sends a blocking message it is blocked until
it receives a reply message.

Locate Authentication Server At startup, clients do not know where the
authentication server is and what its NetworkEngineID is. To locate the
authentication server, the connecting client broadcasts a special message
to all connected nodes. If a server receives such a message, it will reply
to the sending client which will then store the NetworkEngineID of the
server. A message is resent if the client does not receive an answer within
a specified timeout.

5.4 Experimental Results

5.4.1 Profiling

To discover potential bottlenecks in Postina and Mammoth, the profiler
JProfiler[2] has been used. The main focus was on the server used by Mam-
moth as this application does all interest management for all players and thus
has to handle a considerable amount of network traffic. This profiling allowed
to analyze the performance of the different parts of the application and to op-
timize the interaction between different threads, reducing the time the threads
are blocked waiting for a lock.

The profiling showed that the reliability added to Postina does not have a
significant impact on the performance of the server. At 150 connected clients,
the thread handling all incoming messages on the server uses only about 3
percent of the CPU of the server.

5.4.2 Improvements

The profiling allowed to detect and correct several performance flaws and con-
currency issues in Mammoth and Postina, including a deadlock situation in
Mammoth which arrived frequently with a high number of connected users.
Additionally, the profiling showed that Postina with Scribe/Pastry does not
have problems with synchronization.

During the tests it became apparent that about 10% of the CPU time were
used by Postina to verify if an incoming message had already been delivered

CHAPTER 5. APPLICATION OF NEW NETWORK MIDDLEWARE 56

earlier, that is to verify if the unique identifier of an incoming message is in a list
of received messages. A deeper analysis showed that this poor performance was
due to the fact that a linked list was used to store the identifiers of the received
message. With a linked list, the check if an element is in the list is of O(n)
where n is the number of elements of the list. As the list of received messages
grows quickly despite the fact that old elements are removed periodically, this
led to a significant slowdown of the process. For this operation, a hash set with
O(1) would be more appropriate. However, the property of the linked list that
it supports ordering is of key importance for Postina. Hash sets do not support
ordering and thus the linked list cannot simply be replaced by a hash set.

The solution opted for was to define a special data structure called
LinkedHashSet containing both a hidden linked list and a hidden hash set.
New elements added to the list are added to both lists. For all other operations,
the more efficient internal list is chosen. This approach was easy to implement
and allowed to reduce the CPU time used to handle incoming messages by more
than 90%.

5.4.3 Testing with Non-Player Characters

The implementation of Postina with Pastry/Scribe has been tested extensively
inside Mammoth using clients with Non-Player Characters (NPC). The be-
haviour of the NPCs used for this test is rather primitive as the NPCs are
simply moving around randomly. However, this behaviour is perfectly appro-
priate as it causes many messages to be sent over the network and uses both
direct messages (to tell the master that the client has moved) and published
messages (to inform other players about the change).

The NPC-clients were executed on all available computers in the laboratories
of the School of Computer Science at McGill University using a small script
that logged in on the machines and then started the NPC clients. FreePastry
works best when the clients consecutively connect to the network instead of
connecting all at the time. As this behaviour is perfectly realistic for a MMOG,
it was simulated using short breaks between the startup of each client.

5.4.4 Capacity

During the tests, the NPC clients were run on about 80 machines in the same
network. Up to a total of about 300 randomly distributed clients, the interaction
is very smooth and there is no visible difference between the latency with one
or 300 clients.

Above 300 clients, Mammoth using Postina is not stable anymore. The
server does not react anymore on requests. The profiling analysis showed that
this is due to badly synchronized threads in the server application of Mammoth,
leading to a situation in which two threads block each other. Thus, it can now be
said that the network layer is not anymore the limiting component of Mammoth.

When all clients are in the same interest range, the advantages of pub-
lish/subscribe systems become more obvious. The traditional client-server im-

CHAPTER 5. APPLICATION OF NEW NETWORK MIDDLEWARE 57

Figure 5.1: Statistical Comparison of Postina (b = 4) with Client-Server.

plementation fails as soon as a message has to be sent to about 40 clients whereas
a publish/subscribe system such Pastry/Scribe supports fare more clients. Tests
showed that about 100 clients within the same interest range do not represent
a problem.

Postina with Pastry/Scribe is very efficient when a message is multicast,
that is sent to many clients. This is the case when many players are in the
same interest range. When the players are widely distributed on the map, the
performance gain of a publish/subscribe system over a traditional client-server
implementation vanishes. With Pastry/Scribe, a published message has to be
sent to the root node and then through the subscription tree to the subscribers,
thus publishing a message to very few subscribers introduces an overhead. How-
ever, this approach of Pastry is very efficient when there are many subscribers
to a topic as shown in Figure 5.1

Number of Messages Sent By Server

Let us assume a network composed by the server and N clients (that is, a total
of N + 1 nodes). These N clients are all subscribed to the same topic. We now
want to compare the number of messages that have to be sent by the server
when publishing a message.

In Pastry, the nodeIds are created randomly. As explained in Section 2.4.1,
each row in the routing table contains k = 2b − 1 routing entries, where b is a
configuration parameter with typical value of 4. Each of these routing entries
refers to a node. The creation of the lines in the routing tables in Pastry can
be assumed to be random due to Pastry’s randomization properties.

To compute the number of messages sent by the server node we first have
to compute the average number of children nodes per node in the Scribe tree.
A node can be part of the Scribe tree without actually being interested in the
topic (see Section 2.5.1). Given the method of construction of the multicast
tree in Scribe, we can determine in which line of the routing table of a node c
its parent node must be referenced. As the lines in the routing tables can be

CHAPTER 5. APPLICATION OF NEW NETWORK MIDDLEWARE 58

assumed to be filled randomly, the probability of randomly hitting the routing
entry pointing to a node x in the yth line of the routing table of a specific node
z is k

N . The sample of all possible children nodes of a node is of size N (all other
nodes). Thus, the number of times the node x is selected as a parent node is
expected to be N ∗ k

N = k. Therefore, the average number of children nodes of
any node in the Scribe tree is k.

In Scribe, the node with nodeId numerically closest to the key of a topic
becomes the rendez-vous node for this topic. As the nodeIds are created ran-
domly, the selection of the rendez-vous node of a topic is random, too. Thus,
the probability that the server node is also the rendez-vous node is 1

N+1
. As

shown above, each node has k children nodes on average. Therefore, the server
has to send up to k messages on average if it is the rendez-vous node.

With a probability of 1 − 1

N+1
= N

N+1
, the server is not the rendez-vous

node. In this case, it has to send a message to the rendez-vous node to issue a
publication to a topic. Additionally, the server node can also be in the tree for
this topic, in which case it has to send a message to up to k children on average.
Therefore, the server has to send a maximum of 1 + k messages on average if it
is not the rendez-vous node.

In total, the server node is, on average, expected to send a maximum of

m =
1

N + 1
∗ k +

N

N + 1
∗ (k + 1)

=
k + N ∗ k + N

N + 1

<
1 + k + N ∗ k + N

N + 1

=
(1 + k) + N ∗ (1 + k)

N + 1

=
(1 + k) ∗ (N + 1)

N + 1
= 1 + k

= 1 + 2b − 1

= 2b

messages for a publication with N subscribers when using Pastry/Scribe.
Note especially that the maximum number of expected messages sent by the
server node is independent of the number of nodes in the network. With the
default configuration b = 4, the expected number of messages sent by the server
node in Pastry/Scribe is smaller than 24 = 16 on average. The experimental
evaluation done by the developers of Scribe in [11] show that the measured
results are even better when Scribe is tested experimentally.

If the same task is solved with a client-server approach, the server always
has to send N messages.

Chapter 6

Limitations of Postina with
Pastry/Scribe

Although Pastry is a very strong system and the most appropriate one we could
find for MMOGs, it obviously also has some weak points. As the default im-
plementation of Postina uses Pastry/Scribe and relies on its functionalities, the
same limitations as for Pastry/Scribe are also true for Postina. In this chapter,
the flaws of Postina with Pastry/Scribe will be discussed, namely problems with
P2P behind firewalls, reliability issues and finally scalability issues.

6.1 Peer-to-Peer

Peer-to-peer systems are very powerful in terms of scalability. In an ideal peer-
to-peer system where all peers are perfectly identical, the load is distributed
equally over the entire network of peers. This allows to avoid central servers
and thus eliminates a bottleneck. However, the fact that the peers are equal
implies that they all have to be accessible from the network. Therefore, firewalls
represent a serious obstacle.

During tests of Pastry/Scribe, the fact that it entirely relies on peer-to-peer
proved to be problematic. Clients behind a firewall could not join the network
and thus built an own partition, that is a ‘network’ consisting of a single client.

The aim of this section is first to discuss the limitations and second to outline
possible solutions.

6.1.1 Problem Description

In this section, first the problems related to P2P existing with the current,
standard version of Pastry/Scribe shall be discussed. Second, the necessary
configuration to make it work is given.

59

CHAPTER 6. LIMITATIONS OF POSTINA WITH PASTRY/SCRIBE 60

Limitations

Several tests showed that the current implementation using the standard version
of Pastry/Scribe does not work when a client is behind a firewall or in a network
using NAT. This means that most users in universities or companies but also
many private users cannot connect to the P2P-network and thus would not be
able to use a version of Mammoth that uses Pastry/Scribe.

Several tests have been made to find out in which situations the current
version works or fails:

• All peers inside the McGill network (software engineering lab computers
as well as the servers rogue, halo and oni): this setup works perfectly.

• Client in network at the University of Fribourg trying to connect to node
on rogue: fails as rogue cannot open a TCP connection to the client in
the network at Fribourg due to firewall restrictions.

• Client on home computer tries to connect to a node on rogue: fails as the
firewall prevents rogue from opening a TCP connection to the client.

Requirements for Current Version

Older versions of Pastry/Scribe provided NAT support and configured the fire-
wall automatically using UDnP. However, NAT support is broken in the newer
versions. Additionally, UDnP has two serious disadvantages: First, it has to be
activated in the firewall. Second, the library used by Pastry does not perform
well. Tests made with the home computer failed completely although UDnP was
activated on the router. Configuring port forwarding manually failed, too, but
was not tested extensively. This negative impression was confirmed by Gabriel
Vasile, researcher at the INRIA in France, who faced similar problems.

In order to have Pastry/Scribe work in the current version, the clients are
not allowed to be behind a firewall or NAT interface (except the case when all
clients are behind the same firewall).

6.1.2 Possible Solutions

Currently there exist five possible solutions to these limitations of Pastry/Scribe:

Ignore The easiest ‘solution’ would be to ignore the limitations and require all
users to manually configure port forwarding, provided that NAT support
is re-established.

Super-Peers The problem could be solved using super-peers. Nodes with
full access, that is nodes that are not behind firewalls, would be super-
peers and build a standard P2P network. Clients behind a firewall/NAT
would directly connect to one of the super-peers, following a server-client
paradigm. These clients would still be treated as normal members of the
network.

CHAPTER 6. LIMITATIONS OF POSTINA WITH PASTRY/SCRIBE 61

Client-server as Fallback System A solution would be to mix the client-
server approach with Pastry. By default, a new client would connect
to Pastry. If this connection fails, it would fall back to a client-server
system and connect to a statically defined client in the network through
a direct connection. In the worst case, with all connecting clients being
behind a firewall, this solution would thus fall back to the traditional
client-server approach. This approach has the advantage that it would be
easier to implement than other solutions as no changes to Pastry would
be necessary.

Hole Punching Hole punching could be added to the current implementation
of FreePastry.

UDP A solution being developed by Luigi De Donà in collaboration with the
FreePastry team offers a new network layer for Pastry on the top of UDP
which would allow to traverse the firewall/NAT. This network layer, which
is supposed to be released soon under LGPL, currently provides the fol-
lowing features (source: e-mail from Luigi De Donà):

1. implements/extends the java nio API

2. includes reliable-sequenced (tcp-like) / unreliable-unsequenced (udp-
like) data transfer primitives

3. includes udp hole punching nat traversal, optimized : with inviting
caching and superfluous punching pings suppression

4. includes bandwidth control + congestion control tcp-like tcp-friendly

5. uses binary serialization - no java serialization inside, low protocol
overhead

6. is content agnostic

7. fragments automatically large packets/buffers

8. is optimized for latency, to transfer small control messages

9. includes a simple centralized mediation server with external address
detector

10. includes pseudo NETSTAT command to call via Telnet

11. a server implemented with Jautobahn can accept thousands connec-
tions using only one low level DatagramSocket instance.

12. your application can use only one low level DatagramSocket to send
and receive messages.

6.1.3 Conclusion

Currently, no ideal solution to this problem with P2P-networks is available. The
solution with super-peers sounds promising. However it only works well if many
clients are not behind a firewall and function as a super-peer. Additionally,

CHAPTER 6. LIMITATIONS OF POSTINA WITH PASTRY/SCRIBE 62

implementing this solution on top of Pastry might be very challenging and
time-consuming. Especially the routing of direct messages could pose problems
as clients behind a NAT would not be directly visible to other clients.

The solution proposed by Luigi De Donà would also be interesting and ac-
cording to Jeff Hoye, a developer of FreePastry, it should be possible to integrate
it easily with the existing application. However, it has not yet been released
and thus cannot yet be tested.

Jeff Hoye announced that re-establishing NAT- and UDnP-support in FreeP-
astry is one of the most important goals of the developer team. He is currently
(February 2008) working on a solution using super-peers. This solution would
require about 20% of the clients to be accessible without a firewall. The other
clients could then connect to the network using one of these super-peers. Jeff
Hoye is planning to add, after completion of the approach with super-peers,
a solution using holepunching. By combining these two solutions, all clients
should then be able to join the network.

Unfortunately this solution is not yet available at the end of this project. It
is, however, very easy to replace the used version of FreePastry with a newer
release (see Section 4.4.5 on page 50).

6.2 Reliability

Pastry does not provide any reliability guarantees. Therefore, they had to be
implemented on top of FreePastry for Postina as described in Section 4.1.4 on
page 36.

6.2.1 Reasons for Loss of Messages

There are several reasons that can lead to the loss of a message in Pastry1.
First, a published message can be lost when it is waiting in the queue of a
node to be forwarded while this node fails. In this case, all messages in the
queue of the node are lost and not forwarded anymore. Second, congestion
can cause the loss of messages as FreePastry silently drops messages when the
queues overflow. This implies that loss of messages is more frequent when many
clients are connected to the network and sending messages. Third, the fact that
FreePastry drops messages when it doesn’t have a current lease for its keyspace
from its direct neighbours causes lost messages in case of consistency problems.
Fourth, messages may be lost during the process of repairing a subscription tree
after detection of a recent node failure.

6.2.2 Limitations of Reliability

The implementation of reliable direct messaging on top of Pastry has the dis-
advantage of introducing an overhead. Each message has been acknowledged

1See also the message of Jeff Hoye in the FreePastry mailinglist from November 2:
https://mailman.rice.edu/pipermail/freepastry-discussion-l/2007-November/001742.html .

https://mailman.rice.edu/pipermail/freepastry-discussion-l/2007-November/001742.html

CHAPTER 6. LIMITATIONS OF POSTINA WITH PASTRY/SCRIBE 63

by the receiver. With no messages lost, the number of messages sent over the
network is doubled. Unfortunately, this overhead can hardly be avoided when
implementing reliability for Pastry.

Additionally, the implemented reliability is based on end-to-end acknowl-
edgements and cannot provide absolute delivery guarantees as described in Sec-
tion 4.1.4 on page 36.

6.3 Dead Peers

In peer-to-peer systems, clients may leave the network at any time without
announcing their departure. In order to avoid problems, a mechanism allowing
to identify dead clients is necessary. Although Pastry internally detects failed
nodes, this cannot be used for Postina for two reasons. First, nodes only detect
the failure of nodes in their routing table. Second, it may take several minutes
to discover such a failure. This is far too long for direct messaging as a client
might constantly try to resend all messages to another client for several minutes,
which would cause a huge amount of useless network traffic.

The solution for this problem opted for in Postina is to use the reliability
mechanism to detect dead clients. The implementation of this approach is
described in Section 4.3.7 on page 46.

6.4 Security

Joining the network of nodes in Pastry is very easy. However, this simplicity
represents also a disadvantage as there is no access control. Every client wanting
to connect can do so. Pastry does not provide any access control. Additionally,
all clients in the network can subscribe to all topics and thus also access all
information available in the network.

A second security problem with peer-to-peer networks such as Pastry are
malicious nodes, that is nodes that seem to be usual nodes but are in fact
working against the system’s goals. Such nodes might, for example, issue fake
publications and thus prevent the system from working well. As described in
Section 2.4.1 on page 16, Pastry does not handle such malicious nodes in its
default version.

6.5 Scalability

Pastry does have the disadvantage that direct messages have to be routed to the
destination through the network of nodes. This procedure is less efficient than
sending a message directly to the client without any routing over other nodes.
However, it can not be avoided as opening a direct TCP connection between all
clients would be far more inefficient and would seriously limit the capacity of
the network layer.

CHAPTER 6. LIMITATIONS OF POSTINA WITH PASTRY/SCRIBE 64

Despite the fact that sending a direct message possibly requires many hops
on the network, Pastry/Scribe currently does not limit the scalability of Postina
within Mammoth as it has been designed for scalability and supports many
nodes in the network. Successful tests of Pastry were run with 100000 nodes
in a network[17]. The capacity limits of most massively multiplayer games,
including Mammoth, are far below this number.

The strength of Pastry/Scribe in terms of scalability clearly lies in the pub-
lish/subscribe functionalities. These are especially useful when a message is
multicast to many different clients.

Chapter 7

Evaluation

This chapter concludes this thesis by giving a short summary, an outlook sug-
gesting possible improvements and a conclusion.

7.1 Summary

In this thesis we have first studied different available network middlewares.
After this evaluation of alternatives, the requirements of MMOGs using Mam-
moth as an example and the possible solutions with the publish/subscribe sys-
tems Padres and Pastry/Scribe were discussed in some detail. This comparison
showed that Pastry/Scribe is the most appropriate network middleware for a
massively multiplayer game research framework like Mammoth.

After this exact definition of the requirements of MMOGs we designed and
introduced Postina, an API for the network layer of MMOGs. Postina com-
bines publish/subscribe functionalities with direct messages and provides some
features useful for MMOGs, such as issuing subscriptions for other clients.

In addition to designing Postina we also implemented a version of Postina
using Pastry/Scribe and gave a guide for both users and programmers wanting
to replace Pastry/Scribe. To be able to test the new framework within a real
application, the version of Postina using Pastry/Scribe was then integrated into
Mammoth. The following scalability experiments showed that Postina has al-
lowed to considerably improve the capacity of Mammoth and that the network
layer is not anymore the limiting factor in Mammoth.

Nevertheless, Postina with Pastry/Scribe still has some limitations which
were discussed after the extensive testing. The main problem is the lack of
support for clients behind a firewall. Additionally, the reliability provided by
Postina with Pastry/Scribe is limited.

65

CHAPTER 7. EVALUATION 66

7.2 Outlook

Although Postina proved to work well within Mammoth, it can still be improved.
Currently, there are three major improvements possible. First, direct messaging
is not optimal as messages are routed through the network of nodes which
can lead to a large number of hops. A possible project would be to find an
optimal mechanism for direct messaging in peer-to-peer networks. Second, the
problem that clients behind a firewall are not supported should be solved as
this limits the use of Postina with Pastry/Scribe. Third, reliability could be
improved so that not only direct messages but also published messages are
reliable. However, this improvement would have to be implemented on a lower
level, that is directly in the middleware used by Postina, to avoid overloading
the network with acknowledgements.

7.3 Conclusion

To conclude, it can be said that Postina with Pastry/Scribe has proved to be an
appropriate choice for a massively multiplayer online game. During this project,
we were able to significantly improve the performance of Mammoth with regard
to the number of simultaneously connected players. After extensive testing it
can also be stated that Postina with Pastry/Scribe can be considered as stable.
Thus, the task of replacing the network layer of Mammoth with a more powerful
one has been accomplished successfully during this master thesis.

The design decisions taken when developing Postina proved to be appropriate
during the tests. This allowed to effectively use the new API for the network
layer in MMOGs in a real application. Therefore, we have shown that Postina
is suited for the use in massively multiplayer online games.

On a personal level, this Master thesis was a success for the author. Thanks
to the great support from Alexandre Denault, the author was able to learn and
practise many techniques important for practical work as a software engineer.
Furthermore, despite administrative obstacles, the experience of doing a part of
the studies abroad at another university was very enriching.

Bibliography

[1] The FreePastry tutorial.
http://www.freepastry.org/FreePastry/tutorial/index.html.

[2] Java profiler - jprofiler.
http://www.ej-technologies.com/products/jprofiler/overview.html.

[3] log4j. http://logging.apache.org/log4j/.

[4] Mammoth. http://mammoth.cs.mcgill.ca/.

[5] PADRES: A reliable publish/subscribe middleware.
http://padres.msrg.toronto.edu/.

[6] Pastry: A substrate for peer-to-peer applications.
http://freepastry.rice.edu/.

[7] Properties (java 2 platform se 5.0).
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Properties.html.

[8] Scribe. http://freepastry.rice.edu/SCRIBE/default.htm.

[9] J.-S. Boulanger. Interest management for massively multiplayer games.
Master’s thesis, McGill University, 2006.

[10] M. Castro, P. Druschel, Y. C. Hu, and A. I. T. Rowstron. Topology-aware
routing in structured peer-to-peer overlay networks. In FuDiCo ’02: Pro-
ceedings of the International Workshop on Future Directions in Distributed
Computing, 2002.

[11] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron. Scribe:
A large-scale and decentralized application-level multicast infrastructure.
IEEE Journal on Selected Areas in Communications (JSAC) (Special Issue
on Network Support for Multicast Communications), 20(8):100–110, 2002.

[12] M. Coutourier. Flexible pub-sub system for the Mammoth project. Tech-
nical report, School of Engineering, McGill University, Montreal, Canada,
2007.

67

http://www.freepastry.org/FreePastry/tutorial/index.html
http://www.ej-technologies.com/products/jprofiler/overview.html
http://logging.apache.org/log4j/
http://mammoth.cs.mcgill.ca/
http://padres.msrg.toronto.edu/
http://freepastry.rice.edu/
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Properties.html
http://freepastry.rice.edu/SCRIBE/default.htm

BIBLIOGRAPHY 68

[13] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The many
faces of publish/subscribe. ACM Comput. Surv., 35(2):114–131, 2003.

[14] E. Fidler, H.-A. Jacobsen, G. Li, and S. Mankovski. The PADRES dis-
tributed publish/subscribe system. In ICFI ’05: International Conference
on Feature Interactions in Telecommunications and Software Systems, Le-
icester, UK, 2005.

[15] G. Mühl. Generic constraints for content-based publish/subscribe systems.
In C. Batini, F. Giunchiglia, P. Giorgini, and M. Mecella, editors, CoopIS
’01: Proceedings of the 6th International Conference on Cooperative Infor-
mation Systems, pages 211–225, Berlin Heidelberg, 2001. Springer-Verlag.

[16] G. Mühl. Large-scale content-based publish/subscribe systems. PhD thesis,
University of Darmstadt, 2002.

[17] A. I. T. Rowstron and P. Druschel. Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems. In Middleware
’01: Proceedings of the IFIP/ACM International Conference on Distributed
Systems Platforms Heidelberg, pages 329–350, London, UK, 2001. Springer-
Verlag.

[18] A. I. T. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel. Scribe:
The design of a large-scale event notification infrastructure. In NGC ’01:
Proceedings of the Third International COST264 Workshop on Networked
Group Communication, pages 30–43, London, UK, 2001. Springer-Verlag.

[19] D. Tam, R. Azimi, and H.-A. Jacobsen. Building content-based pub-
lish/subscribe systems with distributed hash tables. In Databases, Informa-
tion Systems, and Peer-to-Peer Computing, volume 2944/2004 of Lecture
Notes in Computer Science, pages 138–152. Springer Verlag, Berlin Heidel-
berg, 2004.

[20] S. Voulgaris, E. Rivière, A.-M. Kermarrec, and M. van Steen. Sub2Sub:
Self-organizing content-based publish subscribe for dynamic large scale col-
laborative networks. In The 5th International Workshop on Peer-to-Peer
Systems (IPTPS), Santa Barbara, CA, USA, 2006.

	Introduction
	Motivation
	Task of Thesis
	Used Software, Environment
	Schedule

	Evaluation of Middlewares
	Publish/Subscribe
	Application Area
	Actors
	Overview
	Selection Mechanisms
	Routing

	Sub-2-Sub
	System Description
	Spread Publications, Routing
	Expected Network Traffic
	Evaluation

	PADRES
	System Description
	Special Features
	Evaluation

	Pastry
	System Description
	Performance
	Evaluation

	SCRIBE
	System Description
	Evaluation

	Evaluation Summary

	Requirements of MMOGs and Solutions
	Mammoth
	Requirements
	Scalability
	Message importance/subscription quality
	Direct Messaging
	Interface
	Arrival of Clients

	Problems & Solutions with PADRES and SCRIBE
	Communication Duplica Master
	Information about Moving Players
	Send Serialized Data
	Arrival of Clients
	Possible Improvements/Extensions

	Comparison
	Final Decision about Middleware

	Postina
	Description
	Purpose
	Naming
	Features
	Special Features

	API
	PostinaNetworkLayer
	PostinaTopic
	PostinaMsgListener
	PostinaClientListener
	PostinaMessage
	Exceptions

	Implementation With Pastry/Scribe
	Main Application
	Messaging
	Subscriptions
	Identification
	Remote Calls
	Reliability
	Detection of Dead Clients
	Broadcasting

	User Guide
	How To Use The Provided Version
	License
	Multiple Network Interfaces
	Properties
	Upgrade Pastry/Scribe
	How To Replace Pastry/Scribe
	Logging
	Trouble Shooting

	Unit Testing

	Application of New Network Middleware
	Preparatory Work
	User Guide
	Interfaces Of The Network Engine
	How To Integrate Another Middleware
	How To Select The Middleware To Be Used

	Integration of Postina Into Mammoth
	Client vs. Server
	Request Message

	Experimental Results
	Profiling
	Improvements
	Testing with Non-Player Characters
	Capacity

	Limitations of Postina with Pastry/Scribe
	Peer-to-Peer
	Problem Description
	Possible Solutions
	Conclusion

	Reliability
	Reasons for Loss of Messages
	Limitations of Reliability

	Dead Peers
	Security
	Scalability

	Evaluation
	Summary
	Outlook
	Conclusion

	References

